Field Assessment of FBE-Coated Pipelines and the Implications for Stress Corrosion Cracking

Author(s):  
Fraser King ◽  
Yufeng Cheng ◽  
Linda Gray ◽  
Brent Drader ◽  
Robert Sutherby

One proposed method for preventing the initiation of SCC on pipelines is through the use of high-performance coatings in conjunction with effective cathodic protection. High-performance coatings include fusion bonded epoxy (FBE), urethanes, liquid epoxies, extruded polyethylene, and multi-layer coatings. This paper reports the results of a CEPA-sponsored project to determine the long-term performance of FBE coatings on underground pipelines using in situ field measurements. The barrier properties of FBE coatings were measured after several years field service using Electrochemical Impedance Spectroscopy (EIS). Measurements were made on four FBE-coated pipelines that had been exposed for periods of between 5 and 20 years. The coatings studied included three different formulations from two different manufacturers. A variety of site, soil and CP conditions were also examined. The combination of EIS measurements and analyses of trapped water samples demonstrated that the FBE coatings continued to perform well after having been exposed for up to 20 years. Although some blistering and disbondment was observed in some cases as a result of poor application and storage procedures, in all cases the pipe surface was still protected either by the coating itself or by the joint action of the CP system and the CP-compatible FBE coating. The results of this study provide strong evidence that FBE-coated pipelines should not be susceptible to the initiation of SCC, due to (i) the barrier properties of the coating, (ii) the CP-compatible nature of the coating, and (iii) good surface preparation techniques that involve the removal of millscale and the introduction of compressive surface residual stresses.

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 118 ◽  
Author(s):  
Alam ◽  
Samad ◽  
Sherif ◽  
Poulose ◽  
Mohammed ◽  
...  

Epoxy coating formulations containing 1%, 3%, and 5% SiO2 nanoparticles were produced and applied on a mild steel substrate to achieve the objective of high performance corrosion resistance. The electrochemical impedance spectroscopy (EIS) technique was employed to measure the anticorrosive properties of coatings. The corrosion tests were performed by exposing the coated samples in a solution of 3.5% NaCl for different periods of time, varied from 1 h and up to 30 days. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analyses revealed the presence of nanoparticles in the final cured samples. Establishing the incorporation of the nanoparticles in the coating formulations was confirmed by employing both of XRD and FT-IR techniques. The FT-IR spectra have proved to be satisfactory indicating that there was a complete reaction between the epoxy resin with the hardener. EIS measurements confirmed that the presence and the increase of SiO2 nanoparticles greatly improved the corrosion resistance of the epoxy coating. The highest corrosion resistance for the coatings was obtained for the formulation with 5% SiO2 nanoparticles content, particularly with prolonging the immersion time to 30 days.


2019 ◽  
Vol 272 ◽  
pp. 01001
Author(s):  
Nadia HAMMOUDA ◽  
Kamel BELMOKRE

The purpose of the different operations under the term surface preparation is to get a clean surface able to be coated. It is essential to adapt this preparation in terms of the metallurgical nature of the substrate, cleanliness, its shape and roughness. Surface preparations especially the operations of sandblasting, polishing, or grinding prove of capital importance. It allows to modify the superficial properties of these materials, after these treatments the surface becomes very active. This paper evaluates the mechanical surface treatments effect by sandblasting (Sa 1.5 and Sa 2.5) on the electrochemical corrosion characteristics of C-1020 carbon steel in 3% NaCl solution electrolyte simulating aggressive sea atmosphere. Investigations are conducted using stationary (free potential "E-t, polarization curves "E-i", the Tafel rights and the Rp) and nonstationary electrochemical tools such as electrochemical impedance. The results obtained allowed us to highlight that sandblasted carbon steel degrades with immersion time because of the roughness of the surface. These results were confirmed by the plot of the electrochemical impedance diagrams, confirming that the process governing kinetics is under charge transfer control. Good protection against corrosion cannot be obtained only with a good surface preparation of the adapted steel.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5986
Author(s):  
Tao Chen ◽  
Hao Guo ◽  
Leiming Yu ◽  
Tao Sun ◽  
Anran Chen ◽  
...  

Si/PEDOT: PSS solar cell is an optional photovoltaic device owing to its promising high photovoltaic conversion efficiency (PCE) and economic manufacture process. In this work, dopamine@graphene was firstly introduced between the silicon substrate and PEDOT:PSS film for Si/PEDOT: PSS solar cell. The dopamine@graphene was proved to be effective in improving the PCE, and the influence of mechanical properties of dopamine@graphene on solar cell performance was revealed. When dopamine@graphene was incorporated into the cell preparation, the antireflection ability of the cell was enhanced within the wavelength range of 300~450 and 650~1100 nm. The enhanced antireflection ability would benefit amount of the photon-generated carriers. The electrochemical impedance spectra test revealed that the introduction of dopamine@graphene could facilitate the separation of carriers and improve the junction quality. Thus, the short-circuit current density and fill factor were both promoted, which led to the improved PCE. Meanwhile, the influence of graphene concentration on device performances was also investigated. The photovoltaic conversion efficiency would be promoted from 11.06% to 13.15% when dopamine@graphene solution with concentration 1.5 mg/mL was applied. The achievements of this study showed that the dopamine@graphene composites could be an useful materials for high-performance Si/PEDOT:PSS solar cells.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 408 ◽  
Author(s):  
Ludan Qin ◽  
Shuo Yao ◽  
Jiaxin Zhao ◽  
Chuanjian Zhou ◽  
Thomas W. Oates ◽  
...  

Polyetheretherketone (PEEK) is an important high-performance thermoplastic. Its excellent strength, stiffness, toughness, fatigue resistance, biocompatibility, chemical stability and radiolucency have made PEEK attractive in dental and orthopedic applications. However, PEEK has an inherently hydrophobic and chemically inert surface, which has restricted its widespread use in clinical applications, especially in bonding with dental resin composites. Cutting edge research on novel methods to improve PEEK applications in dentistry, including oral implant, prosthodontics and orthodontics, is reviewed in this article. In addition, this article also discusses innovative surface modifications of PEEK, which are a focus area of active investigations. Furthermore, this article also discusses the necessary future studies and clinical trials for the use of PEEK in the human oral environment to investigate its feasibility and long-term performance.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 571
Author(s):  
Aurelia Elena Tudose ◽  
Ioana Demetrescu ◽  
Florentina Golgovici ◽  
Manuela Fulger

The aim of this work was to study the corrosion behavior of a Fe-Cr-Ni alloy (310 H stainless steel) in water at a supercritical temperature of 550 °C and a pressure of 250 atm for up to 2160 h. At supercritical temperature, water is a highly aggressive environment, and the corrosion of structural materials used in a supercritical water-cooled nuclear reactor (SCWR) is a critical problem. Selecting proper candidate materials is one key issue for the development of SCWRs. After exposure to deaerated supercritical water, the oxides formed on the 310 H SS surface were characterized using a gravimetric analysis, a metallographic analysis, and electrochemical methods. Gravimetric analysis showed that, due to oxidation, all the tested samples gained weight, and oxidation of 310H stainless steel at 550 °C follows parabolic rate, indicating that it is driven by a diffusion process. The data obtained by microscopic metallography concord with those obtained by gravimetric analysis and show that the oxides layer has a growing tendency in time. At the same time, the results obtained by electrochemical impedance spectroscopy (EIS) measurements indicate the best corrosion resistance of Cr, and (Fe, Mn) Cr2O4 oxides developed on the samples surface after 2160 h of oxidation. Based on the results obtained, a strong correlation between gravimetric analysis, metallographic analysis, and electrochemical methods was found.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3679
Author(s):  
Ismat H. Ali

This study aimed to examine the extract of barks of Tamarix aphylla as a corrosion inhibitor. The methodology briefly includes plant sample collection, extraction of the corrosion inhibitor, gravimetric analysis, plotting potentiodynamic polarization plots, electrochemical impedance spectroscopic measurements, optimization of conditions, and preparation of the inhibitor products. The results show that the values of inhibition efficiency (IE%) increased as the concentrations of the inhibitor increased, with a maximum achievable inhibition efficiency of 85.0%. Potentiodynamic polarization (PP) tests revealed that the extract acts as a dual-type inhibitor. The results obtained from electrochemical impedance spectroscopy (EIS) measurements indicate an increase in polarisation resistance, confirming the inhibitive capacity of the tested inhibitor. The adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm model and involves competitive physio-sorption and chemisorption mechanisms. The EIS technique was utilized to investigate the effect of temperature on corrosion inhibition within the 298–328 K temperature range. Results confirm that the inhibition efficiency (IE%) of the inhibitor decreased slightly as the temperature increased. Lastly, the thermodynamic parameters for the inhibitor were calculated.


Author(s):  
Atef Y. Shenouda ◽  
M. M. S. Sanad

Li2NixFe1−xSiO4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) samples were prepared by sol–gel process. The crystal structure of prepared samples of Li2NixFe1−xSiO4 was characterized by XRD. The different crystallographic parameters such as crystallite size and lattice cell parameters have been calculated. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) investigations were carried out explaining the morphology and function groups of the synthesized samples. Furthermore, electrochemical impedance spectra (EIS) measurements are applied. The obtained results indicated that the highest conductivity is achieved for Li2Ni0.4Fe0.6SiO4 electrode compound. It was observed that Li/Li2Ni0.4Fe0.6SiO4 battery has initial discharge capacity of 164 mAh g−1 at 0.1 C rate. The cycle life performance of all Li2NixFe1−xSiO4 batteries was ranged between 100 and 156 mAh g−1 with coulombic efficiency range between 70.9% and 93.9%.


2017 ◽  
Vol 157 ◽  
pp. 739-747 ◽  
Author(s):  
R.T. De Silva ◽  
M.M.M.G.P.G. Mantilaka ◽  
S.P. Ratnayake ◽  
G.A.J. Amaratunga ◽  
K.M. Nalin de Silva

2021 ◽  
Vol 317 ◽  
pp. 498-505
Author(s):  
Sabrina M. Yahaya ◽  
Mohamad Kamal Harun ◽  
Ismaliza Ismail ◽  
Rosmamuhamadani Ramli

In this study, poly(m-aminophenol) (PMAP) coating was electrochemically synthesized by cyclic voltammetry (CV) on mild steel surface to investigate the effects of its barrier protection within the scope of its electrochemical impedance towards further oxidation of the mild steel substrates. The developed PMAP coating were characterized by Fourier Transform Infrared (FTIR) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). The barrier resistance ability of PMAP coating towards corrosion of mild steel was determined in 0.5 M aqueous sodium chloride solution (NaCl) at various immersion times by the electrochemical impedance spectroscopy (EIS). The barrier properties were interpreted through impedance measurement using Nyquist and Bode plots. Equivalent electrical circuit models derived from the plots were employed to describe the coating barrier behaviour and performance. Data obtained showed that, the oxidation peak of PMAP coating were observed at potential +1.0 V (Ag/AgCl). The micrograph of FESEM indicates the formation of a dense and continous PMAP coatings. In FTIR analyses, the presence of peak around 1082 cm-1 ascribed to C–O–C etheric linkage which supported the formation of electro polymerized PMAP coating on mild steel surface. EIS measurement revealed that, PMAP coatings experienced a significant drop in total impedance values with time followed by the development of an electrochemical reactions on coating/metal interface, which indicates the gradual degradation of the barrier resistance ability of the PMAP coatings.


Sign in / Sign up

Export Citation Format

Share Document