Investigation of Temperature-Dependent Droplet Formation of Nanofluids in Microfluidic T-Junction

Author(s):  
Nam-Trung Nguyen ◽  
S. M. Sohel Murshed ◽  
Say-Hwa Tan

The study on the control of microdroplet formation and manipulation is very important due to the potential applications of droplet-based microfluidics in various important fields. Experimental investigations on thermally controlled droplet formation and size manipulation of deionized water and nanofluids in a microfluidic T-junction are reported in this paper. The heater temperature affects the droplet formation process. Nanofluids are found to exhibit different characteristics in droplet formation and size control with the temperature. Addition of spherical-shaped TiO2 (15 nm) nanoparticles in deionized water results in much smaller droplet size compared to the cylindrical-shaped TiO2 (10×40) nm) nanoparticles. Other than nanofluid with cylindrical-shaped nanoparticles, the droplet size was found to increase with increasing temperature.

Author(s):  
Dazhong Wu ◽  
Changxue Xu ◽  
Srikumar Krishnamoorthy

Additive manufacturing is driving major innovations in many areas such as biomedical engineering. Recent advances have enabled 3D printing of biocompatible materials and cells into complex 3D functional living tissues and organs using bioink. Inkjet-based bioprinting fabricates the tissue and organ constructs by ejecting droplets onto a substrate. Compared with microextrusion-based and laser-assisted bioprinting, it is very difficult to predict and control the droplet formation process (e.g., droplet velocity and size). To address this issue, this paper presents a new data-driven approach to predict droplet velocity and size in the inkjet-based bioprinting process. An imaging system was used to monitor the droplet formation process. To investigate the effects of excitation voltage, dwell time, and rise time on droplet velocity and droplet size, a full factorial design of experiments was conducted. Two predictive models were developed to predict droplet velocity and droplet size using random forests. The accuracy of the two predictive models was evaluated using the relative error. Experimental results have shown that the predictive models are capable of predicting droplet velocity and size with sufficient accuracy.


2016 ◽  
Vol 10 (6) ◽  
pp. 2821-2829 ◽  
Author(s):  
Matthew J. Vaughan ◽  
Kasper van Wijk ◽  
David J. Prior ◽  
M. Hamish Bowman

Abstract. The elastic and anelastic properties of ice are of interest in the study of the dynamics of sea ice, glaciers, and ice sheets. Resonant ultrasound spectroscopy allows quantitative estimates of these properties and aids calibration of active and passive seismic data gathered in the field. The elastic properties and anelastic quality factor Q in laboratory-manufactured polycrystalline isotropic ice cores decrease (reversibly) with increasing temperature, but compressional-wave speed and attenuation prove most sensitive to temperature, indicative of pre-melting of the ice. This method of resonant ultrasound spectroscopy can be deployed in the field, for those situations where shipping samples is difficult (e.g. remote locations), or where the properties of ice change rapidly after extraction (e.g. in the case of sea ice).


1995 ◽  
Vol 398 ◽  
Author(s):  
A.R. Guo ◽  
C.-S. Tu ◽  
Ruiwu Tao ◽  
R.S. Katiyar ◽  
Ruyan Guo ◽  
...  

ABSTRACTThe longitudinal (LO) and transverse (TO) A1 vibrational modes have been measured between 30-1200 cm−1 as a function of temperature (30–1240 K) for CsTiOAsO4 (CTA). The frequencies for all corresponding Raman components shifted to lower frequencies on increasing the temperature, however, there is no typical soft-mode like behavior observed in the measured frequency range. The relative intensities of the low frequency bands increase dramatically with increasing temperature due to high mobility of Cs+ ion. A higher symmetry structure taking place above 940K has been confirmed by changes in the phonon spectra.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Mahmoud Al-Hussein ◽  
Gert Strobl

AbstractTemperature-dependent small-angle X-ray scattering spectroscopy of isothermally cold crystallized isotactic polystyrene revealed considerable morphological reorganization during subsequent heating to the melt. Both the crystalline thickness and the long period increased continuously with increasing temperature before the samples finally melted. The temperature dependence of these changes correlated very well with the melting behaviour observed with differential scanning calorimetry. As the temperature increased during a heating scan, the initial lamellae that formed during isothermal crystallization showed only little reorganization until they started to melt. Then, the molten material recrystallized continuously into increasingly thicker lamellae at increasing temperature until they finally melted. As the crystallization temperature approached the final melting temperature of the recrystallized lamellae, the initial lamellae melted without further recrystallization and no morphological changes were seen in this case.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4651-4658
Author(s):  
Teng Teng ◽  
Xiaoyan Zhu ◽  
Yu-Ming Wang ◽  
Chao-Yang Ren

Gas-flow in coal or rock is hypersensitive to the changes of temperature, confin?ing pressure and gas pressure. This paper implemented a series of experiments to observe the seepage behavior, especially the permeability evolution of CO2 in naturally fractured coal sample under coupled hydro-thermal-mechanical conditions. The experimental results show that coal permeability increases exponentially with the increasing gas pressure, and tends to be linear when the confining pressure is high. Coal permeability decreases exponentially with the increasing confining pressure. Coal permeability decreases with the increasing temperature generally, but it may bounce up when the temperature rises to high. The results provide reference for the projects of coal gas extraction and carbon dioxide geological sequestration.


2019 ◽  
Vol 26 (07) ◽  
pp. 1850214
Author(s):  
QINGBIN WANG ◽  
LIANGYUAN SHI ◽  
YUN YANG ◽  
HUI HUANG ◽  
YI JIE ◽  
...  

Metallic nanoparticles have attracted intense interest for the potential applications in biocompatibility due to the reduced particle size. However, the methods to produce metallic nanoparticles usually produce an inhomogeneous size distribution. In this work, Cu nanoparticles were generated using a gas-aggregation cluster source technique, employing a specially designed quadrupole mass filter to control the size of the nanoparticles with a mass resolution (m/[Formula: see text]m) of 5. Transmission electron microscopic (TEM) analysis was used to confirm the size control of our technique. The generally high angular electronic scattering analysis revealed the spherical shapes of the Cu nanoparticles. We used beams of these nanoparticles to prepare nano-granular films on a Si substrate. Their antibacterial effect of the modified materials on Escherichia coli was assessed by means of a bacterial adhesion test. Our results may not only reveal the cluster technique to produce the uniform metallic nanoparticles, but also form the basis of antibacterial applications.


Parasitology ◽  
1980 ◽  
Vol 81 (1) ◽  
pp. 91-102 ◽  
Author(s):  
C. A. Mills

SUMMARYThe reproduction and survival of the ectoparasitic digenean Transversotrema patialense on the fish host Brachydanio rerio are shown to be temperature-dependent. Survival is reduced by any deviation from an optimum temperature of approximately 23°C. With increasing temperature the rate of egg production per surviving fluke rises progressively faster to a higher peak up to 29°C but falls to zero by 35°C. The span of egg production varies closely with the life-span of the parasite at each temperature. The optimum temperature for the total number of eggs produced by each cohort of parasites is also 23°C. This number is a function of both adult parasite survival and the rate of egg output.


1987 ◽  
Vol 109 (1) ◽  
pp. 68-71 ◽  
Author(s):  
Savio L.-Y. Woo ◽  
Thay Q. Lee ◽  
Mark A. Gomez ◽  
Shigeru Sato ◽  
Frederic P. Field

The temperature dependent tensile behavior of ligament was investigated from 2°C to 37°C. Nondestructive cyclic tests were performed on ten canine femur-medial collateral ligament-tibia (FMT) complexes at sequential temperatures of 22°C, 22°C, 27°C, 32°C, 37°C, and again at 22°C. The samples were rested at zero load between tests for sufficient time periods to allow for full recovery from the ligament’s time and history dependent viscoelastic properties. Ten additional FMT complexes were sequentially tested in a similar fashion, but at temperatures of 22°C, 22°C, 2°C, 6°C, 14°C, and 22°C. All canine FMT complexes showed temperature dependent viscoelastic properties: the measured area of hysteresis decreased with increasing temperature; the cyclic load relaxation behavior plateaued to a higher value at lower temperatures; and the tensile load at a predetermined ligament substance strain level had an inversely proportional relationship with respect to temperature.


2002 ◽  
Vol 17 (5) ◽  
pp. 1019-1023 ◽  
Author(s):  
S.J. Yang ◽  
T.W. Kang ◽  
T.W. Kim ◽  
K.S. Chung

The dependences of the properties of Au/Ni/Si/Ni contacts, deposited on p-GaN epilayers by using electron-beam evaporation, on the Si layer thickness and the annealing temperature were investigated with the goal of producing contacts with low specific resistances. The results of the current–voltage (I–V) curves showed that the lowest specific contact resistance obtained for the Au/Ni/Si/Ni contact with a 1200-Å- thick Si layer on p-type GaN annealed at 700 °C for 1 min in a nitrogen atmosphere was 8.49 × 10-4 Ω cm2. The x-ray diffraction (XRD) measurements on the annealed Au/Ni/Si/Ni/p-GaN/sapphire heterostructure showed that Ni3Si, GaAu, and NiGa layers were formed at the Au/Ni/Si/Ni/p-GaN interfaces. While the intensities corresponding to the Ni3Si layer decreased with increasing annealing temperature above 700 °C, those related to the GaAu and the NiGa layers increased with increasing temperature. These results indicate that the Au/Ni/Si/Ni contacts with 1200-Å-thick Si layers annealed at 700 °C hold promise for potential applications in p-GaN-based optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document