Vortex-Induced Vibration of Catenary Moored Cylindrical Structures

Author(s):  
Brad Stappenbelt ◽  
Krish Thiagarajan

Mooring systems utilised for floating structures typically introduce non-linear load-excursion behaviour. This non-linear compliance and the accompanying amplitude dependent natural frequency, influences the Vortex-Induced Vibration (VIV) response of the structure. The application of linear compliance VIV modelling and experimental data has been demonstrated to produce significant uncertainties regarding VIV onset and response prediction of catenary moored cylindrical structures (Bjarke et al. 2003; Dijk et al. 2003). The vortex-induced vibration issues associated with catenary moored cylindrical structures were investigated through non-linearly compliant elastically mounted rigid cylinder experiments. In particular, third order polynomial, hard spring stiffness, (typical of catenary moorings) was considered. The effect on transverse VIV lock-in and vibration amplitudes was examined using a single degree of freedom experimental rig. The experimental rig consisted of a moderately damped, elastically mounted rigid cylinder, restricted in all but the cross-flow direction through use of linear slide mechanism. The linear and cubic compliance components were independently varied over the non-linear compliance ratio of 0 to 0.3. All experimentation was conducted within the stable sub-critical Reynolds number range. The experimental data was compared to numerical results produced by the VIV modelling software package VisFlo. The program utilises a vortex-in-cell discrete vortex numerical method that was modified to allow the inclusion of varying degrees of structural non-linearity.

2002 ◽  
Vol 124 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Takaaki Sakai ◽  
Masaki Morishita ◽  
Koji Iwata ◽  
Seiji Kitamura

Experimental validation of the design guideline to prevent the failure of a thermometer well by vortex-induced vibration is presented, clarifying the effect of structure damping on displacement amplitudes of a cantilever cylinder. The available experimental data in piping are limited to those with small damping in water flow, because of the difficulty in increasing structure damping of the cantilever cylinders in experiments. In the present experiment, high-viscosity oil within cylinders is used to control their structure damping. Resulting values of reduced damping Cn are 0.49, 0.96, 1.23, 1.98, and 2.22. The tip displacements of the cylinder induced by vortex vibration were measured in the range of reduced velocity Vr from 0.7 to 5 (Reynolds number is 7.8×104 at Vr=1). Cylinders with reduced damping 0.49 and 0.96 showed vortex-induced vibration in the flow direction in the Vr>1 region. However, in cases of reduced damping of 1.23, 1.98, and 2.22, the vibration was suppressed to less than 1 percent diameter. It is confirmed that the criteria of “Vr<3.3 and Cn>1.2” for the prevention of vortex-induced vibration is reasonably applicable to a cantilever cylinder in a water flow pipe.


2021 ◽  
Vol 927 ◽  
Author(s):  
Banafsheh Seyed-Aghazadeh ◽  
Bridget Benner ◽  
Xhino Gjokollari ◽  
Yahya Modarres-Sadeghi

Vortex-induced vibration of a curved flexible cylinder placed in the test section of a recirculating water tunnel and fixed at both ends is studied experimentally. Both the concave and the convex orientations (with respect to the incoming flow direction) are considered. The cylinder was hung by its own weight with a dimensionless radius of curvature of $R/D=66$ , and a low mass ratio of $m^{*} = 3.6$ . A high-speed imaging technique was employed to record the oscillations of the cylinder in the cross-flow direction for a reduced velocity range of $U^{*} = 3.7 - 48.4$ , corresponding to a Reynolds number range of $Re= 165 - 2146$ . Mono- and multi-frequency responses as well as transition from low-mode-number to high-mode-number oscillations were observed. Regardless of the type of curvature, both odd and even mode shapes were excited in the cross-flow directions. However, the response of the system, in terms of the excited modes, amplitudes and frequencies of the oscillations, was observed to be sensitive to the direction of the curvature (i.e. concave vs convex), in particular at higher reduced velocities, where mode transition occurred. Hydrogen bubble flow visualization exhibited highly three-dimensional vortex shedding patterns in the wake of the cylinder, where there existed spatial and temporal evolution of the vortex shedding modes along the length of the cylinder. The time-varying intermittent vortex shedding in the wake of the cylinder was linked to the spanwise travelling wave behaviour of the vortex-induced vibration response. The observed spatially altering wake corresponded to the multi-modal excitation and mode transition along the length of the cylinder.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1968 ◽  
Author(s):  
Sylvie Bilent ◽  
Thi Hong Nhung Dinh ◽  
Emile Martincic ◽  
Pierre-Yves Joubert

This paper reports on the study of microporous polydimethylsiloxane (PDMS) foams as a highly deformable dielectric material used in the composition of flexible capacitive pressure sensors dedicated to wearable use. A fabrication process allowing the porosity of the foams to be adjusted was proposed and the fabricated foams were characterized. Then, elementary capacitive pressure sensors (15 × 15 mm2 square shaped electrodes) were elaborated with fabricated foams (5 mm or 10 mm thick) and were electromechanically characterized. Since the sensor responses under load are strongly non-linear, a behavioral non-linear model (first order exponential) was proposed, adjusted to the experimental data, and used to objectively estimate the sensor performances in terms of sensitivity and measurement range. The main conclusions of this study are that the porosity of the PDMS foams can be adjusted through the sugar:PDMS volume ratio and the size of sugar crystals used to fabricate the foams. Additionally, the porosity of the foams significantly modified the sensor performances. Indeed, compared to bulk PDMS sensors of the same size, the sensitivity of porous PDMS sensors could be multiplied by a factor up to 100 (the sensitivity is 0.14 %.kPa−1 for a bulk PDMS sensor and up to 13.7 %.kPa−1 for a porous PDMS sensor of the same dimensions), while the measurement range was reduced from a factor of 2 to 3 (from 594 kPa for a bulk PDMS sensor down to between 255 and 177 kPa for a PDMS foam sensor of the same dimensions, according to the porosity). This study opens the way to the design and fabrication of wearable flexible pressure sensors with adjustable performances through the control of the porosity of the fabricated PDMS foams.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


2007 ◽  
Vol 8 (5) ◽  
pp. 449-464 ◽  
Author(s):  
C. H. Son ◽  
T. A. Shethaji ◽  
C. J. Rutland ◽  
H Barths ◽  
A Lippert ◽  
...  

Three non-linear k-ε models were implemented into the multi-dimensional computational fluid dynamics code GMTEC with the purpose of comparing them with existing linear k-ε models including renormalization group variations. The primary focus of the present study is to evaluate the potential of these non-linear models in engineering applications such as the internal combustion engine. The square duct flow and the backwards-facing step flow were two simple test cases chosen for which experimental data are available for comparison. Successful simulations for these cases were followed by simulations of an engine-type intake flow to evaluate the performance of the non-linear models in comparison with experimental data and the standard linear k-ε models as well as two renormalization group types. All the non-linear models are found to be an improvement over the standard linear model, but mostly in simple flows. For more complex flows, such as the engine-type case, only the cubic non-linear models appear to make a modest improvement in the mean flow but without any improvement in the root-mean-square values. These improvements are overshadowed by the stiffness of the cubic models and the requirements for smaller time steps. The contributions of each non-linear term to the Reynolds stress tensor are analysed in detail in order to identify the different characteristics of the different non-linear models for engine intake flows.


2017 ◽  
Vol 24 (3) ◽  
pp. 543-551 ◽  
Author(s):  
Vladimir Y. Zaitsev ◽  
Andrey V. Radostin ◽  
Elena Pasternak ◽  
Arcady Dyskin

Abstract. Results of examination of experimental data on non-linear elasticity of rocks using experimentally determined pressure dependences of P- and S-wave velocities from various literature sources are presented. Overall, over 90 rock samples are considered. Interpretation of the data is performed using an effective-medium description in which cracks are considered as compliant defects with explicitly introduced shear and normal compliances without specifying a particular crack model with an a priori given ratio of the compliances. Comparison with the experimental data indicated abundance (∼ 80 %) of cracks with the normal-to-shear compliance ratios that significantly exceed the values typical of conventionally used crack models (such as penny-shaped cuts or thin ellipsoidal cracks). Correspondingly, rocks with such cracks demonstrate a strongly decreased Poisson ratio including a significant (∼ 45 %) portion of rocks exhibiting negative Poisson ratios at lower pressures, for which the concentration of not yet closed cracks is maximal. The obtained results indicate the necessity for further development of crack models to account for the revealed numerous examples of cracks with strong domination of normal compliance. Discovering such a significant number of naturally auxetic rocks is in contrast to the conventional viewpoint that occurrence of a negative Poisson ratio is an exotic fact that is mostly discussed for artificial structures.


2017 ◽  
Vol 828 ◽  
pp. 196-235 ◽  
Author(s):  
Ravi Kumar R. Tumkur ◽  
Arne J. Pearlstein ◽  
Arif Masud ◽  
Oleg V. Gendelman ◽  
Antoine B. Blanchard ◽  
...  

We computationally investigate coupling of a nonlinear rotational dissipative element to a sprung circular cylinder allowed to undergo transverse vortex-induced vibration (VIV) in an incompressible flow. The dissipative element is a ‘nonlinear energy sink’ (NES), consisting of a mass rotating at fixed radius about the cylinder axis and a linear viscous damper that dissipates energy from the motion of the rotating mass. We consider the Reynolds number range $20\leqslant Re\leqslant 120$, with $Re$ based on cylinder diameter and free-stream velocity, and the cylinder restricted to rectilinear motion transverse to the mean flow. Interaction of this NES with the flow is mediated by the cylinder, whose rectilinear motion is mechanically linked to rotational motion of the NES mass through nonlinear inertial coupling. The rotational NES provides significant ‘passive’ suppression of VIV. Beyond suppression however, the rotational NES gives rise to a range of qualitatively new behaviours not found in transverse VIV of a sprung cylinder without an NES, or one with a ‘rectilinear NES’, considered previously. Specifically, the NES can either stabilize or destabilize the steady, symmetric, motionless-cylinder solution and can induce conditions under which suppression of VIV (and concomitant reduction in lift and drag) is accompanied by a greatly elongated region of attached vorticity in the wake, as well as conditions in which the cylinder motion and flow are temporally chaotic at relatively low $Re$.


Author(s):  
MILTON CANO-CHAUCA ◽  
AFONSO M. RAMOS ◽  
PAULO C. STRINGHETA ◽  
JOSÉ ANTONIO MARQUES ◽  
POLLYANNA IBRAHIM SILVA

Curvas de secagem de banana passa foram determinadas, utilizando-se três temperaturas do ar de secagem. Os resultados indicaram que para reduzir o teor de umidade do produto até 23,5% foram necessários tempos de secagem de 51, 36 e 30 horas paras as temperaturas de 50, 60 e 70ºC, respectivamente. O modelo exponencial U/Uo = exp(-kt) foi ajustado para os dados experimentais mediante análise de regressão não-linear, encontrandose alto coeficiente de regressão linear. Determinou-se a atividade de água do produto ao longo do processo de secagem para as três temperaturas testadas. Estudou-se a correlação entre a atividade de água e o teor de umidade do produto, determinando-se as isotermas de dessorção da banana passa a 25ºC. Observou-se que a atividade de água diminuiu em função do tempo de secagem e do teor de umidade para as três temperaturas de secagem. Os dados experimentais foram ajustados mediante regressão não-linear ao modelo polinomial e a seguinte equação foi obtida: U = -1844,93 + 7293,53Aa – 9515,52Aa2 + 4157,196Aa3. O ajuste mostrou-se satisfatório (R2 > 0,90). DRYING CURVES AND WATER ACTIVITY EVALUATION OF THE BANANA-PASSES Abstract Banana drying curves were determined by utilizing three drying air temperatures. The results indicated that to reduce the moisture content of the product until 23.5% it were necessary drying times of 51, 36 and 30 hours for temperatures of 50, 60 and 70ºC, respectively. The exponential model U/Uo = exp(-kt) was adjusted for the experimental data by means of non linear regression analysis, and a high coefficient of linear regression was found. The water activity of the product was determined throughout the drying process for the three tested temperatures. The correlation between the water activity and moisture content of the product was studied, and the sorption isotherms were determined at 25º C. It was observed that the water activity decreased in function to the drying time and moisture content for the three drying temperatures. The experimental data were adjusted by means of non linear regression to the polynomial model and the following equation was obtained: U = - 1844.93 + 7293.53A a – 9515.52 Aa 2 + 4157.196A a 3. The final adjust was satisfactory (R2 > 0.90).


1998 ◽  
Vol 120 (4) ◽  
pp. 991-998 ◽  
Author(s):  
L. B. Wang ◽  
G. D. Jiang ◽  
W. Q. Tao ◽  
H. Ozoe

The periodically fully developed laminar heat transfer and pressure drop of arrays with nonuniform plate length aligned at an angle (25 deg) to air direction have been investigated by numerical analysis in the Reynolds number range of 50–1700. The body-fitted coordinate system generated by the multisurface method was adopted to retain the corresponding periodic relation of the lines in physical and computational domains. The computations were carried out just in one cycle. Numerical results show that both the heat transfer and pressure drop increase with the increase in the length ratio of the long plate to the short plate, and decrease with the decrease in the ratio of transverse pitch to the longitudinal pitch. The numerical results exhibit good agreement with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document