Numerical-Analytical Prediction of the Collapse of Flexible Pipes Under Bending and External Pressure

Author(s):  
Walter C. Loureiro ◽  
Ilson P. Pasqualino

This work gathers the phenomena indicated through the available literature and industry standards as determinant in the evaluation of the collapse of flexible pipes under combined bending and external pressure. It also proposes a complete analytical formulation to assess the collapse strength. The effects of dimensional variations and added ovalization due to bending are combined to evaluate the final collapse pressure. Numerical models are generated for comparison purposes and experimental results are used to validate the formulation proposed. The good agreement obtained between numerical and analytical predictions show that is possible to determine the curve collapse of flexible pipes through analytical approaches.

Author(s):  
Gabriel M. Gonzalez ◽  
José Renato M. de Sousa ◽  
Luis V. S. Sagrilo ◽  
Ricardo R. Martins ◽  
Djalene M. Rocha

Abstract In this work, a previously proposed finite element is applied in conjunction with a modal approach to predict the lateral buckling resistance of the tensile armors in flexible pipes. The finite element represents the mechanical behavior of tensile armors settled on elastic foundations, which model the frictional interaction between these armors and the surrounding layers. This FE modal approach is used to evaluate the buckling response of 44 different tensile armors considering 15 different friction coefficients between layers. The responses obtained formed a dataset employed in symbolic regression analyses that led to an analytical formulation capable of adequately reproducing the numerical results with minimum computational effort. The results obtained with this analytical formulation are compared to those from other numerical models and experimental measurements showing good agreement and evidencing the potential of the proposed formulation.


Author(s):  
Linfa Zhu ◽  
Victor Pinheiro Pupo Nogueira ◽  
Zhimin Tan

Abstract As the flexible pipe industry targets more on deepwater applications, collapse performance of flexible pipes becomes a key challenge due to the huge hydrostatic pressure during installation and service. The collapse strength of flexible pipes largely depends on the structural characteristics of carcass, pressure sheath and pressure armor layers. Therefore, the collapse prediction methodology involving a sound modeling of these layers is essential. Over the years, Baker Hughes have collected a large amount of collapse testing data. The prediction tool needs to be validated and calibrated against all the collapse tests for best accuracy. In this paper, the latest progress of the collapse prediction methodology and qualification tests are presented. A generalized collapse model was developed to predict the collapse pressure of flexible pipes. This model incorporates the advantages of both the weighted kNN regression technique and an analytical collapse model. It is able to reproduce the exact collapse pressure on the pipes tested and can predict the collapse pressure of other pipe designs not tested. As part of the qualification process, the capacity to prevent collapse must be demonstrated. Several flexible pipes were designed based on this generalized prediction methodology for deep water application, and pipe samples were manufactured using industrial production facilities for collapse tests. The results show that flexible pipes following current design guidelines are suitable for deepwater applications.


Author(s):  
Alfredo Gay Neto ◽  
Clóvis de Arruda Martins

When submitted to high external pressure, flexible pipes may collapse. If the external sheath is damaged, all the external pressure is directly applied on the internal polymeric layer that transmits the loading to the carcass layer, which can fail due to this effect, leading to wet collapse. This failure mode must be taken into account in a flexible pipe design. A model can be set up neglecting the influence of the pressure armor, but this assumption may underestimate the wet collapse pressure value. This work aims to include the pressure armor effect in the numerical prediction of wet collapse. The main contribution of the pressure armor to the flexible pipe resistance to collapse is to be a constraint to the radial displacement of the carcass and the internal polymeric layers. Two models were developed to find the wet collapse pressure in flexible pipes. A first study was done using a ring approximation three-dimensional (3D) finite element method (FEM) model. Comparisons are made with more simplified models using a 3D FEM equivalent ring approximation. The aim is to clarify the mechanical behavior of the pressure armor in the wet collapse scenario. Parametric studies of initial ovalization of carcass and initial gaps and interference between polymeric layer and pressure armor are made and discussed.


1982 ◽  
Vol 104 (4) ◽  
pp. 343-348 ◽  
Author(s):  
T. Tamano ◽  
Y. Inoue ◽  
H. Mimura ◽  
S. Yanagimoto

Collapse testing of commercial API grade 7-in. casing was conducted under combined external pressure and axial load. The measured collapse pressure was considerably higher than the API minimum value, especially for the large D/t ratio, as expected. For the casings of large D/t ratio, the measured collapse pressure was a little smaller than the theoretical value for ideal pipe and the axial stress had a slight effect on the collapse pressure. In the range of plastic collapse, the measured collapse pressure was not less than the yield pressure for ideal pipe except near the boundary of the elastic and plastic collapse ranges.


Author(s):  
Xavier Castello ◽  
Segen F. Estefen

Sandwich pipes composed of two steel layers separated by a polypropylene annulus can be used for the transport of oil&gas in deepwaters, combining high structural resistance with thermal insulation in order to prevent blockage by paraffin and hydrates. In this work, sandwich pipes with typical inner diameters of those employed in the offshore production are analyzed numerically to evaluate the ultimate strength under external pressure and longitudinal bending as well as the effect of the reeling installation method on the collapse pressure. Numerical models were developed using the commercial finite element software ABAQUS. The validation was based on experimental results. The analyses for combined loading were performed using symmetry conditions and the pipe was reduced to a ring with unitary length. The analysis of bending under a rigid surface was simulated numerically according to the experiments performed using a bending apparatus especially built for full scale tests. Symmetry conditions were employed in order to reduce the analysis to a quarter of a pipe. Mesh sensitivity studies were performed to obtain an adequate mesh refinement in both analyses. The collapse pressure was simulated numerically either for the pre or post reeling process. Bauschinger effect was included by using kinematic hardening plasticity models. The influences of plasticity and out-of-roundness on the collapse pressure have been confirmed.


Author(s):  
Victor Pinheiro Pupo Nogueira ◽  
Theodoro Antoun Netto

Offshore oil and gas production worldwide constantly moves to deeper water with increasing flexible pipe operational severity. Failure mechanisms, i.e., sequences of events which may lead to failure, are nowadays more likely to happen. Therefore, it is important to develop reliable numerical tools that can be used in the design stages or during service-life to assess the structural integrity of pipes under specific operational conditions. This work presents a methodology to develop simple finite element models capable to reproduce the behavior of structural layers of flexible pipes under hydrostatic pressure up to the onset of collapse. The models use beam elements and include contact between layers, nonlinear kinematics and material behavior. Different configurations were analyzed: carcass-only, and carcass plus pressure armor with dry and wet annular. The dependability of the numerical models is assessed in light of experimental tests on flexible pipes with 4 and 8 inch nominal internal diameters. Relevant geometric parameters and material properties of each specimen were measured and subsequently used in the models to reproduce the physical experiments. The metallic inner carcass and pressure armor layer manufacturing processes cause a high degree of stress-induced material anisotropy. Due to the inherent difficulty to determine the non-homogeneous elastic-plastic material behavior of the wires’ cross-sections, a novel alternative method was used to estimate their average stress-strain curves up to moderate strains (2%). Good correlation was obtained between experimental and numerical results. The applied methodology proved to be simple and yet efficient and reliable for the estimation of the collapse pressure of flexible pipes.


1982 ◽  
Vol 22 (05) ◽  
pp. 609-615 ◽  
Author(s):  
T. Kyogoku ◽  
K. Tokimasa ◽  
H. Nakanishi ◽  
T. Okazawa

Abstract This paper discusses a newly developed collapse testing machine that permits investigation of practical performances of oilwell casings. Although a theoretical performances of oilwell casings. Although a theoretical analysis has shown that "axial tension stress has no effect on collapse pressure in the elastic case," this theory is not applied to the design of casing string because of lack of useful experimental data or authorized recommendation. To investigate the effect of axial tension load, full-size commercial casings have been tested under combined loading of axial tension load and external pressure. From the experimental results, the theory mentioned was proved in the case of so-called high-collapse casing, which has been used widely in recent years. Also shown is the applicable d/h range, which is wider than API's elastic collapse range. If the results of this experiment were applied to the design of a casing program, an economical and safe one could be obtained. program, an economical and safe one could be obtained. Introduction Recently, improved drilling techniques have permitted deeper and deeper oil and gas wells. As well depth increases, steel pipes for well casings receive greater external pressure and axial tension load because of the weight of the casing string. High-collapse casing, which has higher collapse strength per unit weight, has become easily available. To select and to design casing for such wells properly and economically, estimating collapse strength of the casing under axial tension load is very important. Much research and many experiments concerning collapse problems on casing, drillpipe, and tubing has been conducted by 1939. A theoretical analysis showed that axial tension stress lowers the collapse pressure in the case of plastic collapse and that axial tension stress has no effect on collapse pressure in the elastic case. Although collapse tests under axial tension load simulating oilwell casing in service were conducted on 2-in.-OD tubings, the theory for the effect of axial tension stress in the elastic collapse had not been proved sufficiently. There are few published experimental proved sufficiently. There are few published experimental data on collapse strength under axial tension load. In 1968, API summarized the collapse data and showed the formulas for collapse pressure and for collapse pressure under axial tension stress in the case of plastic collapse. The purpose of our study is to show how the collapse strength of commercial casings with large OD's behaves under the axial tension load, especially in the case of elastic collapse. To test the large-size casings, a multipurpose collapse testing machine that can simulate the service condition of oilwell casing has been developed. Statement of the Problem The collapse strength of casings under combined external pressure and axial tension load may be calculated from pressure and axial tension load may be calculated from Ref. 6's Formula 1.1.5.1: ....................(1) SPEJ p. 609


1986 ◽  
Vol 108 (1) ◽  
pp. 35-47 ◽  
Author(s):  
M. K. Yeh ◽  
S. Kyriakides

The collapse of long thick-walled tubes under external pressure is studied both experimentally and analytically. A two-dimensional nonlinear formulation of the problem is presented. The formulation is general enough to include initial geometric imperfections of the tube cross section such as initial ovality and wall thickness variation. In addition the effects of residual stresses and of initial inelastic anisotropy are considered. Experiments on tubes with D/t values between 10 and 40 were carried out. Good agreement between experiments and theory is shown to occur provided all parameters are modeled correctly. A study of the effect of the various parameters of the problem on the collapse pressure is also presented.


1993 ◽  
Vol 115 (1) ◽  
pp. 15-26 ◽  
Author(s):  
R. Madhavan ◽  
C. D. Babcock ◽  
J. Singer

The paper presents the results from a combined experimental and analytic study on the collapse of long, thick-walled tubes subjected to external pressure and axial tension. The experiments involved tubes of diameter-to-thickness ratio (Dm/t) 10 to 40. Collapse envelopes were obtained for two different pressure-tension loading paths. Collapse tests involving initially ovalized tubes were also carried out. The collapse strength predicted with a two-dimensional elasto-plastic model applying J2 flow rule was in good agreement with the experiments. The results show that the collapse strength under combined loading is strongly influenced by initial ovality and that the shape of the stress-strain curve has a significant influence on the tension-pressure collapse envelope.


Author(s):  
Jefferson Lacerda ◽  
Marcelo I. Lourenço ◽  
Theodoro A. Netto

The constant advance of offshore oil and gas production in deeper waters worldwide led to increasing operational loads on flexible pipes, making mechanical failures more susceptible. Therefore, it is important to develop more reliable numerical tools used in the design phase or during the lifetime to ensure the structural integrity of flexible pipes under specific operating conditions. This paper presents a methodology to develop simple finite element models capable of reproducing the behavior of structural layers of flexible pipes under external hydrostatic pressure up to collapse. These models use beam elements and, in multi-layer analyses, include nonlinear contact between layers. Because of the material anisotropy induced by the manufacturing process, an alternative method was carried out to estimate the average stress-strain curves of the metallic layers used in the numerical simulations. The simulations are performed for two different configurations: one where the flexible pipe is composed only of the interlocked armor, and another considering interlocked armor and pressure armor. The adequacy of the numerical models is finally evaluated in light of experimental tests on flexible pipes with nominal internal diameters of 4 and 6 in.


Sign in / Sign up

Export Citation Format

Share Document