Risk Based Integrity Assessment and Life Extension Procedure for Subsea Wellhead Connectors

Author(s):  
G. Sigurdsson ◽  
T. Hørte ◽  
M. Macke ◽  
A. Wormsen ◽  
L. Reinås

Abstract Subsea Wellheads are the male part of an 18 3/4” bore connector used for connecting subsea components such as drilling BOP, XT or Workover systems equipped with a female counterpart — a wellhead connector. Subsea wellheads have an external locking profile for engaging a preloaded wellhead connector with matching internal profile. When the connector is locked subsea a metal-to-metal sealing is obtained and a structural conduit is formed. The details of the subsea wellhead profile are specified by the wellhead user and the standarisedH4 hub has a widespread use. In terms of well integrity, the wellhead connector is a barrier element during both well construction (drilling) activities and life of field (production). Due to the nature of subsea drilling operations a wellhead connector will be subjected to external loads. Fatigue and plastic collapse are therefore two potential failure modes. These two failure modes are due to the cyclic nature of the loads and the potential for accidental and extreme single loads respectively. Establishing the safe load level that the wellhead connector has structural capacity to handle without failure can be done by deterministic engineering methods. Similarly, a deterministic calculated safe fatigue life is the use limit preventing fatigue failure, assuming no inspections. Probabilistic engineering method; Structural Reliability Analysis (SRA), can be applied to a subsea wellhead connector to establish the probability of fatigue failure (PoF). Risk Based Inspection (RBI) is a probabilistic analysis procedure that requires quantified PoF and Consequence of Failure (CoF). The RBI outcome may be used to optimized inspection plans to ensure a safe PoF target level. The RBI methodology is widely accepted, and guidance can be found in several standards. Subsea wellheads are normally classified as un-inspectable. During drilling operations commencement, the uppermost section of the wellhead (high pressure housing including H4 hub profile) will be visible and accessible thus allowing for inspection. This uppermost section may also accessible for inspection when a wellhead connector is locked on. From an SRA basis a generic RBI procedure applicable to subsea wellheads are proposed and established for a generic case of a 27” mandrel with a H4 hub. This paper then proceeds to providing the maximum non detectable flaw size performance required for a wellhead inspection tool/method to be efficient. The importance of accidental load and cyclic load magnitude and uncertainty is shown to impact this conclusion. The potential inspectional value of performing BOP connector leak test at regular intervals during the drilling operation has also been investigated and shown to be conditionally limited. This paper proposes a procedure for application of RBI to the problem of achieving life extension of a wellhead external locking profile while connected to a wellhead connector. The objective is to propose minimum performance requirements for the inspection tool/method to be efficient. Finally, the potential impact of RBI results in a well integrity risk assessment is covered.

Author(s):  
Torfinn Hørte ◽  
Lorents Reinås ◽  
Anders Wormsen ◽  
Andreas Aardal ◽  
Per Gustafsson

Abstract Subsea Wellheads are the male part of an 18 3/4” bore connector used for connecting subsea components such as drilling BOP, XT or Workover systems equipped with a female counterpart — a wellhead connector. Subsea wellheads have an external locking profile for engaging a preloaded wellhead connector with matching internal profile. As such connection is made subsea, a metal-to-metal sealing is obtained, and a structural conduit is formed. The details of the subsea wellhead profile are specified by the wellhead user and the standardized H4 hub has a widespread use. In terms of well integrity, the wellhead connector is a barrier element during both well construction (drilling) activities and life of field (production). Due to the nature of subsea drilling operations, a wellhead connector will be subjected to external loads. Fatigue and plastic collapse due to overload are therefore two potential failure modes. These two failure modes are due to the cyclic nature of the loads and the potential for accidental and extreme single loads respectively. The safe load the wellhead connector can sustain without failure can be established by deterministic structural capacity methods. This paper outlines how a generic and probabilistic engineering method; Structural Reliability Analysis, can be applied to a subsea wellhead connector to estimate the probability of fatigue failure (PoF). As the wellhead connector is a mechanism consisting of a plurality of parts the load effect from cyclic external loads is influenced by uncertainty in friction, geometry and pre-load. Further, there is a inter dependence between these parameters that complicates the problem. In addition to these uncertainties, uncertainties in the fatigue loading itself (from rig and riser) is also accounted for. This paper presents results from applications of Structural Reliability Analysis (SRA) to a wellhead connector and provides experiences and learnings from this case work.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tianlai Yu ◽  
Linlin Zhang ◽  
Zizheng Liu

PurposeThe fatigue problems of the carriageway slabs of reinforced concrete rib-beam bridges were studied. The analysis of the carriageway slabs could not achieve the actual stress state.Design/methodology/approachBased on this characteristic, the reinforced concrete T-beam group structure system was taken as the research object. Four scale models of the carriageway slabs of reinforced concrete ribbed bridges were designed. The fatigue failure modes and actual fatigue resistance of the carriageway slabs with different length-to-side ratios were systematically studied through static load and fatigue experiments. Based on this, the concrete damage plasticity model (CDP model) was combined with numerical simulation analysis to study the influence of the length-to-short-side ratio of the carriageway slab on the fatigue performance and the remaining bearing capacity.FindingsThe results show that the fatigue failure of the carriageway slab is a three-stage failure; the ratio of the long and short sides has a significant effect on the fatigue performance of the carriageway slab. Under the same fatigue load level, the smaller the ratio of the long and short sides of the carriageway slab.Originality/valueThe fatigue resistance of the unidirectional board is significantly lower than that of the bidirectional board. It is recommended to use the bidirectional board in actual engineering design.


Author(s):  
E. Mat Soom ◽  
M.K. Abu Husain ◽  
N.I. Mohd Zaki ◽  
N.A. Mukhlas ◽  
S.Z.A. Syed Ahmad ◽  
...  

The oil and gas sector has recognised structural integrity assessment of ageing platform for prospective life extension as a rising concern, particularly in encountering the randomness of the harsh ocean environments. This condition leads to uncertainty in wave-in-deck load estimates and a high load level being imposed on offshore structures. This emphasises the necessity of enhanced reliability, as failure might result in inaccessibility because of the uncertainties related to long-distance services, such as accuracy of predictions of loads and responses. Even though the established guidelines present a fundamental assessment, additionally, comprehensive rules are required. This paper performed a reliability analysis incorporating practical approaches that can more accurately represent time-dependent structural deterioration. The following two procedures have been adopted by a majority of significant oil and gas operators to monitor the safety and integrity of these structures: a) Ultimate Strength Assessment (USA) method and b) Reliability Design Assessment (ReDA) method. A comparison of these two reliability approaches was performed on selected ageing jacket structures in the region of the Malaysian sea. The comparative findings, namely, reserve strength ratio (RSR) at various years of the return period (RP) and ratio value for risk of failure regarding the probability of failure (POF), provided a check and balance in strengthening confidence in the results. The findings showed that the structural components might safely survive either using the USA and ReDA method in such conditions, as the reliability indexes were determined to be satisfactory compared to allowable values from ISO 19902 design specifications. Therefore, these evaluations were determined to control the risk level of the structure during the remaining of its lifetime and undertake cost-effective inspections or mitigation strategies when necessary.


Author(s):  
Robert B. Gordon ◽  
Juan Carlos Ruiz-Rico ◽  
Michiel Peter Hein Brongers ◽  
Julian Gomez

This paper applies state-of-the-art integrity management and life extension methodologies to address degradation and failure modes specific to CALM buoy export terminals. The main objectives are to (1) classify the components of the export terminal according to their criticality, (2) establish risk-based inspection and maintenance plans to reduce or mitigate risk to acceptable levels and (3) assess remaining life. The method is applied to a CALM buoy operating off the coast of Colombia. This buoy serves as the oil export terminal for all crude oil transmitted by the Ocensa pipeline, which has a capacity of 560 kBPD or around 60% of total Colombia oil production. The buoy is nearing the end of its design life, and options for life extension have been investigated based on an integrity assessment of the current condition of the equipment. As part of the assessment, detailed plans for future Risk Based Inspections (RBI) and Mitigation, Intervention, and Repair (MIR) have been developed.


Author(s):  
Andrew Francis ◽  
Mike Gardiner ◽  
Marcus McCallum

Pipeline designers and operators recognize that the commercial viability of operating high-pressure gas pipelines decreases with time. This is because the structural integrity levels of the pipeline decrease, due to the action of deterioration processes such as corrosion and fatigue, until the level of mitigation required to ensure adequate safety levels becomes uneconomical. For this reason pipelines are assigned a nominal design life of typically 40 years. This paper describes the application of structural reliability analysis to a high-pressure natural gas pipeline having both onshore and offshore sections, in order to determine the extent to which the asset life could be increased beyond the design life without any significant reduction in reliability and hence safety levels. The approach adopted was to identify the credible failure modes that could affect each of the onshore and offshore sections and determine the probability of failure due to each failure mode taking account of the uncertainties in the parameters that affect each mode. Based on a detailed consideration of the results of the study it was concluded that the life of the asset considered here could be extended to 60 years without any significant reduction in safety levels. Moreover, it was concluded that if certain mitigating measures were to be implemented in the future then it would be possible to increase the asset life to significantly more than 60 years.


Author(s):  
Mamdouh M. Salama ◽  
Bruce J. Nestleroth ◽  
Marc A. Maes ◽  
Chris Dash

In-Line Inspections using magnetic flux leakage (MFL) and the Ultrasonic (UT) intelligent pigs are the most common tools used to assess the integrity of pipelines. But, both MFL and UT inspection results are subject to various sources of uncertainties which must be quantified and accounted for in the integrity assessment of the inspected pipeline. A series of pull-through tests (PTT) of seven MFL tools and two UT tools from five service providers was performed on a 12-inch diameter pipe containing pre-existing internal corrosion defects of various length, width, and depth, and located in a variety of circumferential and longitudinal positions. The results of these tests are used to quantify the detectability statistics and the sizing uncertainties of the different tools for future use in developing calibrated probabilistic models for reliability based inspection, quantitative risk assessment and life extension studies for pipelines. The results of the MFL tools were presented in 2012 OMAE conference and this paper presents the results of the two UT tools.


2021 ◽  
Vol 5 (1) ◽  
pp. 32
Author(s):  
Roya Akrami ◽  
Shahwaiz Anjum ◽  
Sakineh Fotouhi ◽  
Joel Boaretto ◽  
Felipe Vannucchi de Camargo ◽  
...  

Joints and interfaces are one of the key aspects of the design and production of composite structures. This paper investigates the effect of adhesive–adherend interface morphology on the mechanical behavior of wavy-lap joints with the aim to improve the mechanical performance. Intentional deviation from a flat joint plane was introduced in different bond angles (0°, 60°, 90° and 120°) and the joints were subjected to a quasi-static tensile load. Comparisons were made regarding the mechanical behavior of the conventional flat joint and the wavy joints. The visible failure modes that occurred within each of the joint configurations was also highlighted and explained. Load vs. displacement graphs were produced and compared, as well as the failure modes discussed both visually and qualitatively. It was observed that distinct interface morphologies result in variation in the load–displacement curve and damage types. The wavy-lap joints experience a considerably higher displacement due to the additional bending in the joint area, and the initial damage starts occurring at a higher displacement. However, the load level had its maximum value for the single-lap joints. Our findings provide insight for the development of different interface morphology angle variation to optimize the joints behavior, which is widely observed in some biological systems to improve their performance.


2021 ◽  
Author(s):  
Bassey Akong ◽  
Samuel Orimoloye ◽  
Friday Otutu ◽  
Akinwale Ojo ◽  
Goodluck Mfonnom ◽  
...  

Abstract The analysis of wellbore stability in gas wells is vital for effective drilling operations, especially in Brown fields and for modern drilling technologies. Tensile failure mode of Wellbore stability problems usually occur when drilling through hydrocarbon formations such as shale, unconsolidated sandstone, sand units, natural fractured formations and HPHT formations with narrow safety mud window. These problems can significantly affect drilling time, costs and the whole drilling operations. In the case of the candidate onshore gas well Niger Delta, there was severe lost circulation events and gas cut mud while drilling. However, there was need for a consistent adjustment of the tight drilling margin, flow, and mud rheology to allow for effective filter-cake formation around the penetrated natural fractures and traversed depleted intervals without jeopardizing the well integrity. Several assumptions were validly made for formations with voids or natural fractures, because the presence of these geological features influenced rock anisotropic properties, wellbore stress concentration and failure behavior with end point of partial – to-total loss circulation events. This was a complicated phenomenon, because the pre-drilled stress distribution simulation around the candidate wellbore was investigated to be affected by factors such as rock properties, far-field principal stresses, wellbore trajectory, formation pore pressure, reservoir and drilling fluids properties and time without much interest on traversing through voids or naturally fractured layers. This study reviews the major causes of the severe losses encountered, the adopted fractured permeability mid-line mudweight window mitigation process, stress caging strategies and other operational decisions adopted to further salvage and drill through the naturally fractured and depleted intervals, hence regaining the well integrity by reducing NPT and promoting well-early-time-production for the onshore gas well Niger Delta.


2021 ◽  
Author(s):  
Bruno Luiz Barbosa das Chagas ◽  
Celso Kazuyuki Morooka

Abstract Advances in subsea exploration in the oceans to discover new petroleum reservoirs and sometimes different kind of minerals at the seabed in ultra deepwater, continuously introduce new challenges in offshore drilling operations. This motivates the development of increasingly safe maritime operations. In offshore petroleum, a marine drilling riser is the pipe that connects a wellhead at the sea bottom to a drillship at the sea surface, as an access to the wellbore. It serves as a guide for the drilling column with the drill bit and conductor to carry cuttings of rock coming from the wellbore drilling and its construction. Drilling riser is constantly exposed to adversity from the environment, such as waves, sea currents and platform motions induced by waves. These elements of the environment are prevailing factors that can cause a riser failure during deepwater drilling operations with undesirable consequences for the environment. In the present work, key parameters that influence the probability of fatigue failure in a marine drilling riser are identified, and a parametric evaluation with those parameters are carried out. Dynamic behavior of a riser is previously calculated and fatigue damage is estimated. Afterwards, the First Order Reliability Method (FORM) is applied to determine the probability of fatigue failure on the riser. Fundamentals of the procedure are described, and results are illustrated through the analysis for a typical riser in deepwater drilling operation. Parametric evaluations are done observing points considered as critical along the riser length, and looking to the sensitivity of key parameters in the process. For this study, the SN curve from API guidelines is applied and accumulated fatigue damage is estimated from simulations of the stress time series and applying the Palmgren-Miner’s rule. Finally, the influence of each parameter in the reliability of fatigue failure is verified and discussions given.


Sign in / Sign up

Export Citation Format

Share Document