Optimized Intake Manifold Designs and Their Effects on the Operation and Emissions of a Gas-to-Liquid Diesel Engine

Author(s):  
Y. M. Abdellatif ◽  
A. T. Saker ◽  
A. M. Elbashir ◽  
S. F. Ahmed

Abstract Two simultaneous strategies have been used in this work to reduce the diesel engine emissions. First, using novel manifold designs to generate strong turbulence and improve the fuel-air mixing inside the cylinder. The second strategy is the usage of alternative fuels, namely Gas-To-Liquid (GTL) fuel and its blends with diesel fuel. In this study, six new spiral-helical manifolds designs have been tested, which could be divided into two groups. The first group is m(2.6,30,1t), m(2.6,30,2t), m(2.6,330,3t) and m(2.6,30,4t) which contains manifolds that have the same inner diameter (2.6 cm), same outlet angle (30°), but different number of spiral turns (1t, 2t..etc). The second group is m(2.1,30,3t), m(2.6,30,3t) and m(2.9,30,3t) which contains the same parameters but different inner diameters. It should be mentioned that the outlet angle of all manifolds has been tested in previous investigations [18, 52] and 30° showed the best performance. The results of the current study showed that the highest pressure and heat release achieved by manifold m(2.6,30,1t) for the blended diesel-GTL fuel. It was observed that the heat release rate decreases with the increase in number of turns. The lowest pressure raise rate was recorded for the combination of m(2.6,30,1t) and diesel fuel. Same combination also reduced the pressure raise rate (dP/dθ) by about 24% compared to the normal manifold. The bsfc for all fuels and m(2.6,30,1t) were almost the same as the normal manifold. For the emissions, NO emissions were reduced by about 25% compared to normal manifold when m(2.6,30,4t) and GTL are used. On the other hand, the normal manifold recorded the least NO emissions for the other fuels. The manifold m(2.6,30,1t) recorded slightly higher NO emissions compared to the normal manifold for all fuels. The total particulate matters (PM) were the lowest for m (2.6,30,1t) and normal manifold in case of diesel fuel. In general, It was found that the combination of m(2.6,30,1t) with diesel fuel gave the optimum performance among all manifolds, while using m (2.6,30,4t) with GTL fuel produced low emission levels.

2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Yasser M. Abdellatif ◽  
Ahmad T. Saker ◽  
Aboubaker M. Elbashir ◽  
Samer F. Ahmed

Abstract Two simultaneous strategies were used to reduce diesel engine emissions. Optimized manifold designs were used with gas-to-liquid (GTL) fuel and its blend with diesel fuel. Six new spiral-helical manifolds were tested, which could be divided into two groups. The first group is with the same inner diameter (2.6 cm) and outlet angle (30 deg), but the different number of spiral turns (1t, 2t, etc.). The second group is with different inner diameters. The results showed that the highest pressure and heat release were achieved by m(2.6,30,1t) with the diesel–GTL blend. In addition, the heat release rate decreases with the increase in the number of turns. The same combination also reduced the pressure rise rate (dP/dθ) by about 24% compared to the normal manifold. For the emissions, the maximum reduction in CO emissions was achieved by using m(2.6,30,3t) and GTL with about 34%. In addition, the maximum hydrocarbon (HC) reduction was achieved by m(2.1,30,3t) and GTL, which is about 99% lower than that of the normal manifold. NO emissions were reduced by about 25% when m(2.6,30,4t) and GTL are used. The total particulate matters (PM) were the lowest for m(2.6,30,1t) and normal manifold in the case of diesel. Generally, it was found that the combination of m(2.6,30,1t) with GTL and its blend gave the optimum performance and low emissions among all manifolds.


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Biofuels derived from vegetable oils are known to be promising alternative fuels for diesel engines. The possibility of using mixtures of petroleum diesel fuel with rapeseed oil and rapeseed oil methyl ester as environmentally friendly motor fuels is considered. The practicability of changing the composition of these mixtures in accordance with the engine operating mode is shown. A technique for multicriteria optimization of the composition of such mixed biofuels is suggested. The basic characteristics of the optimal composition of these mixed biofuels are calculated. A device for regulating fuel’s composition is proposed. The basic characteristic of regulation of the blended biofuel composition realized by the device is presented. Keywords diesel engine; combustion chamber; oil diesel fuel; rapeseed oil; rapeseed oil methyl ester; biofuel mixture; ecological characteristics; exhaust gases toxicity


2019 ◽  
Vol 112 ◽  
pp. 01014
Author(s):  
Adrian Nicolici ◽  
Constantin Pană ◽  
Niculae Negurescu ◽  
Alexandru Cernat ◽  
Cristian Nuţu

The progressive diminution of the oil reserves all over the world highlights the necessity of using alternative fuels derived from durable renewable resource. The use of the alternative fuels represents a viable solution to reduce the pollutant emissions and to replace fossil fuels. Thus, a viable solution is the use of the animal fats in mixture with the diesel fuel at the diesel engines. A D2156 MTN8 diesel engine was firstly fuelled with diesel fuel and then with different blends of diesel fuel-animal fats (5% and 10% animal fats content). In the paper are presented some results of the experimental investigations of engine fuelled with preheated animal fats. The raw animal fats effects on the combustion process and on the pollutant emissions at different engine loads and 1450 rev/min engine speed are showed. The engine cycle variability increases at the animal fats content increase. The cycle variability for maximum pressure, maximum pressure angle and indicated mean effective pressure is analysed. The cycle variability coefficients values don’t exceed the recommended values of the standard diesel engine.


2020 ◽  
Vol 1010 ◽  
pp. 172-177
Author(s):  
Narisa Sa'at ◽  
Ariffin Samsuri ◽  
Noradila Abdul Latif ◽  
Nurul Fitriah Nasir ◽  
Rais Hanizam Madon ◽  
...  

Elastomer is one of the important material for the hoses, sealants and tubes in the components of fuel delivery system in diesel engine vehicles due to the factor of compatibility with diesel fuel. However, concern were arise that presence of alcohol, fatty acid component and other factors such as water content in the alternative fuels which is blended biodiesel fuel and different chemical composition from the diesel fuel may increase further uncertainty to the consumer of diesel engine or diesel engine manufacturers in terms of compatibility issue. Thus this paper intends to assess current and typical test standards on their efficacy of representing the fuel system of diesel engine vehicles. Respectively, ASTM D471 are based on laboratory immersion studies and the experimental conditions are differ from the real service conditions in the fuel system of diesel engine vehicles. Even though number of previous studies regarding to the compatibility of elastomer components has been reported, there is a need to set up the exact material that present in the fuel system of diesel engine vehicles. This is especially right for elastomers since their resistance is mainly depends on their elemental compositions. As such, introduction of the dynamic testing approach that may be applied when assessing the compatibility study between blended biodiesel fuel that simulate the actual fuel system of a diesel engine vehicles before carrying out in the field trials.


Fuel ◽  
2011 ◽  
Vol 90 (5) ◽  
pp. 1855-1867 ◽  
Author(s):  
D.C. Rakopoulos ◽  
C.D. Rakopoulos ◽  
R.G. Papagiannakis ◽  
D.C. Kyritsis

2019 ◽  
Vol 969 ◽  
pp. 451-460
Author(s):  
Manpreet Singh ◽  
Mohd Yunus Sheikh ◽  
Dharmendra Singh ◽  
P. Nageswara Rao

The rapid rise in energy requirement and problem regarding atmosphere pollutions, renewable biofuels are the better alternative choice for the internal combustion engine to partially or totally replace the pollutant petroleum fuel. In the present work, thumba (Citrullus colocynthis) non-edible vegetable oil is used for the production of biodiesel and examine its possibility as diesel engine fuel. Transesterification process is used to produce biodiesel from thumba non-edible vegetable oil. Thumba biodiesel (TBD) is used to prepare five different volume concentration (blends) with neat diesel (D100), such as TBD5, TBD15, TBD25, TBD35 and TBD45 to run a single cylinder diesel engine. The diesel engine's combustion parameter such as in-cylinder pressure, rate of pressure rise, net heat release rate, cumulative heat release, mean gas temperature, and mass fraction burnt analyzed through graphs and compared all thumba biodiesel blends result with neat diesel fuel. The mass fraction burnt start earlier for thumba biodiesel blends compared to diesel fuel because of less ignition delay while peak in-cylinder pressure, maximum rate of pressure rise, maximum net heat release rate, maximum cumulative heat release, and maximum mean gas temperature has found decreased results up to 1.93%, 5.53%, 4.11%, 4.65%, and 1.73% respectively for thumba biodiesel.


Author(s):  
T. Lakshmanan ◽  
A. Khadeer Ahmed ◽  
G. Nagarajan

Gaseous fuels are good alternative fuels to improve the energy crisis of today’s situation due to its clean burning characteristics. However, the incidence of backfire and knock remains a significant barrier in commercialization. With the invention of latest technology, the above barriers are eliminated. One such technique is timed injection of water into the intake port. In the present investigation, acetylene was aspirated in the intake manifold of a single cylinder diesel engine, with a gas flow rate of 390 g/h, along with water injected in the intake port, to overcome the backfire and knock problems in gaseous dual fuel engine. The brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO2 and exhaust gas temperature were studied. Dual fuel operation of acetylene induction with injection of water results in lowered NOx emissions with complete elimination of backfire and knock at the expense of brake thermal efficiency.


2013 ◽  
Vol 768 ◽  
pp. 218-225 ◽  
Author(s):  
M. Parthasarathy ◽  
J. Isaac Joshua Ramesh Lalvani ◽  
B. Parthiban ◽  
K. Annamalai

Random extraction and consumption of fossil fuels have leads to a reduction in petroleum reserves. As for as developing countries like India is connected the need to search for alternative fuels is most urgent as India is heavily dependent upon the import of petroleum to meet its demands for automotive and power sectors. This has inspired curiously in alternative sources for petroleum based fuels. An alternative fuel must be economically competitive and environmentally acceptable. India has great potential for production of biofuels like Biodiesel from vegetable seeds. In the quest to find an alternative to the existing diesel and petrol fuels various Biodiesel and alcohol has been tried and tested in the Internal Compression engine. In this direction, an attempt has been made to investigate the performance and emission characteristic of Biodiesels and compare it with diesel. The Biodiesels considered are Tamanu, Mahua and Pongamia were tested with four stroke diesel engine. A drastic improvement in reduction of Hydrocarbon (HC) and Carbon monoxide (CO) were found for Biodiesels at high engine loads. Smoke and Nitrogen oxides (NOx) were slightly higher for Biodiesels. Biodiesels exposed similar combustion stages to diesel fuel. Therefore use of transesterified vegetable oils can be partially substituted for the diesel fuel at most operating conditions in term of the performance parameters and emissions without any engine modification.


Sign in / Sign up

Export Citation Format

Share Document