Vibration Tests of 3-Story Benchmark Structure With Three Semiactive Dampers

Author(s):  
Taichi Matsuoka ◽  
Katsuaki Sunakoda ◽  
Kazuhiko Hiramoto ◽  
Issei Yamazaki ◽  
Akira Fukukita ◽  
...  

In a previous paper the authors developed a semiactive damper that generates electrical power, and carried out vibration tests using a 3-story benchmark structure at NCREE, Taiwan in 2006. At that time, the dampers were installed at 1st and 2nd floors. The damper has a large inertia mass by flywheel and controllable damping force by generator, and a load capacity of 30 kN. In the test, the damper at 1st floor was only controlled by Bang-bang control that was based on Lyapunov function. In this paper as the next step, in order to demonstrate more effectiveness of vibration suppression, the dampers are installed at all floors of the 3-story structure, and vibration tests using the same structure are carried out again in 2008. The control law which is proposed here is based on Lyapunov function or predictive switching control for all of damper at each floor. The structure has 9 m high, 3 m wide, 2 m span, 18 tons total weight. Several earthquake waves normalized to be 150 gal are inputted horizontally to the base by a shaking table, and the seismic responses of each floor are estimated quantitatively. It is obviously from the experimental results that the seismic reductions for acceleration and displacement in case of large inertia mass are much better than the case of small one, but control effect is decreasing. Because seismic reduction can be depended on a balance between inertial force and controllable damping force, and plus the one of the reason is time delay of the damper. At last, we can summarize that the semiactive damper is available for seismic isolation in practical use.

Author(s):  
Taichi Matsuoka ◽  
Takuya Wada ◽  
Mizuki Katakura

The authors propose a damper that generates electrical power in order to not only suppress vibration and also get electrical energy when many traffic signal poles are oscillated by wind, traffic turbulence, and earthquake. The damper consists of a displacement magnifying mechanism by using levers, solenoid coils and rare-earth magnets. It is useful for small deformation between a beam and a column of the traffic pole. Vibration modes of the pole are analyzed by using FEM, and then a small scale model of the traffic pole is built up. The small scale model has 2.3 m high, consists of a steel column and a cantilever beam due to rescale about 1/3 of real scale one, and natural frequency is about 3.5 Hz. Trial damper is manufactured and a damping force, which is caused by the coils crossing magnetic field, is adjusted. Dynamic characteristics of the trial damper are measured by a shaking actuator. In order to confirm vibration reduction, both of seismic and harmonic vibration tests of small scale model when the trial damper is installed are carried out by using a shaking table. The experimental results of harmonic responses are compared with the calculated results by FEM, and effect of vibration suppression and efficiency of generating power are discussed experimentally and numerically.


Author(s):  
Akira Fukukita ◽  
Tomoo Saito ◽  
Keiji Shiba

We study the control effect for a 20-story benchmark building and apply passive or semi-active control devices to the building. First, the viscous damping wall is selected as a passive control device which consists of two outer plates and one inner plate, facing each other with a small gap filled with viscous fluid. The damping force depends on the interstory velocity, temperature and the shearing area. Next, the variable oil damper is selected as a semi-active control device which can produce the control forces by little electrical power. We propose a damper model in which the damping coefficient changes according to both the response of the damper and control forces based on an LQG feedback and feedforward control theory. It is demonstrated from the results of a series of simulations that the both passive device and semi-active device can effectively reduce the response of the structure in various earthquake motions.


2020 ◽  
Vol 10 (4) ◽  
pp. 1548 ◽  
Author(s):  
Shenyan Chen ◽  
Zihan Yang ◽  
Minxiao Ying ◽  
Yanwu Zheng ◽  
Yanjie Liu ◽  
...  

The traditional series-type satellite vibration suppression scheme significantly decreases satellite frequency, which leads to difficulty in controlling the amplitude. In the present work, a new parallel viscous damping scheme is adopted on the Payload Adaptor Fitting (PAF), which aims to integrate a load-bearing design and vibration reduction. The vibration amplitude and weight are the most important design requirements of the damping system. The Finite Element (FE) model of PAF was established. Through a series of analyses, the appropriate number and coefficient of dampers were determined. The damping force was calculated according to the damping coefficient and the relative velocity between the two ends of the damper. Based on the damping force and the installation dimensions, the damping rod was designed. The force–velocity test was carried out on the damping rod prototype, which showed its performance satisfies the requirements. With the topology optimization and sizing optimization technology, the light-weight supports were designed and manufactured. One damping rod and two supports were assembled as one set of dampers. Eight sets of dampers were installed on the PAF. Vibration tests were conducted on the damping state PAF. The results showed that the proposed system is effective at suppressing vibration and maintaining stiffness simultaneously.


2016 ◽  
Vol 858 ◽  
pp. 145-150
Author(s):  
Yu Liang Zhao ◽  
Zhao Dong Xu

This paper discussed an elastic-plastic time-history analysis on a structure with MR dampers based on member model, in which the elastoplastic member of the structure is assumed to be single component model and simulated by threefold line stiffness retrograde model. In order to obtain better control effect, Linear Quadratic Gaussian (LQG) control algorithm is used to calculate the optimal control force, and Hrovat boundary optimal control strategy is used to describe the adjustable damping force range of MR damper. The effectiveness of the MR damper based on LQG algorithm to control the response of the structure was investigated. The results from numerical simulations demonstrate that LQG algorithm can effectively improve the response of the structure against seismic excitations only with acceleration feedback.


Author(s):  
Takashi Kawai ◽  
Yasuo Tsuyuki ◽  
Yutaka Inoue ◽  
Osamu Takahashi ◽  
Koji Oka

This paper deals with one of the applications of the Semi-Active Oil Damper system, which applies base isolation systems reducing the maximum acceleration. The theory of the Semi-Active Oil Damper system is based on Karnopp Theory. The theory has been actually now in use for a Semi-active suspension system of the latest Shinkansen (New trunk lines) trains to improve passenger’s comfortable riding. Various experiments have been conducted using a single mass model whose weight is 15 ton on the shaking table. This model is supported by the rubber bearing. The natural frequency is 0.33Hz of this system. Two Semi-Active Oil Damper were installed in the model and excited the table for one horizontal direction. The maximum damping force of each Semi-Active Oil Damper used for the model is 4.21 kN. The damper can change the damping coefficient by utilizing two solenoid valves. Therefore, the dynamic characteristic of the damping force has two modes. One is a hard damping coefficient and the other is a soft one. It was confirmed that the maximum acceleration of the Semi-Active Oil Damper system can be reduced more than 20% in comparison with the passive Oil Damper system in our tests.


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


2010 ◽  
Vol 163-167 ◽  
pp. 4449-4453
Author(s):  
Wei Xiong ◽  
Hing Ho Tsang ◽  
S.H. Lo ◽  
Shou Ping Shang ◽  
Hai Dong Wang ◽  
...  

In this study, an experimental investigation program on a newly proposed seismic isolation technique, namely “Geotechnical Seismic Isolation (GSI) system”, is conducted with an aim of simulating its dynamic performance during earthquakes. The testing procedure is three-fold: (1) A series of cyclic simple shear tests is conducted on the key constituent material of the proposed GSI system, i.e., rubber-sand mixture (RSM) in order to understand its behavior under cyclic loadings. (2) The GSI system is then subjected to a series of shaking table tests with different levels of input ground shakings. (3) By varying the controlling parameters such as percentage of rubber in RSM, thickness of RSM layer, coupled with the weight of superstructure, a comprehensive parametric study is performed. This experimental survey demonstrates the excellent performance of the GSI system for potential seismic hazard mitigation.


Author(s):  
Wendong Wang ◽  
Xing Ming ◽  
Yang Chu ◽  
Minghui Liu ◽  
Yikai Shi

To restrain the interference of micro-vibration caused by Control Moment Gyroscope, a new control method based on Magnetorheological damper was proposed in this paper. A mechanical model based on the structure of the presented design was built, and the semi-active control algorithm of damping force was proposed for the designed Magnetorheological damper. The magnetic flux density and other magnetic field parameters were considered and analyzed in Maxwell, and also the related hardware circuit which implements the control algorithm was prepared to test the presented design and algorithm. The results of simulation and experiments show that the presented Magnetorheological damper model and semi-active control algorithm can complete the requirements, and the vibration suppression method is efficient for Control Moment Gyroscope.


2018 ◽  
Vol 21 (12) ◽  
pp. 1865-1878 ◽  
Author(s):  
Liangkun Liu ◽  
Ping Tan ◽  
Haitao Ma ◽  
Weiming Yan ◽  
Fulin Zhou

Rotational inertia damper, a novel damper, possessing the advantage of displacement amplification, has been employed in outrigger system for seismic mitigation. The equivalent analysis model composed by a uniform cantilever beam and an equivalent spring was proposed to simulate the rotational inertia damper outrigger system, by which the corresponding dynamic characteristic equation was derived based on numerical assembly technique. To gain the response of the damped system, finite element method and state space method have been utilized. Finally, the results show that the pseudo-undamped natural frequency ratios and system modal damping ratios are significantly influenced by stiffness parameter of the exterior column, while the mass parameter of the rotational inertia damper has little effect on them. The optimal damping ratio can be acquired for one mode, but it may be worse for the other mode in the same position equipping rotational inertia damper. Furthermore, numerical simulation results for the typical earthquake records have verified that the rotational inertia damper outrigger has excellent control performance in displacement as well as acceleration. A good agreement between damping force and equivalent force also suggests that the damping force of rotational inertia damper is predominant and the inertial force has no significant effect on the structure.


Author(s):  
Kiyotaka Takito ◽  
Osamu Furuya ◽  
Hiroshi Kurabayashi ◽  
Kunio Sanpei

Abstract In Japan, most structures on the ground surface need seismic countermeasures because of frequently earthquakes. On the other hand, vibration isolation devices are applied to precision or important equipment in several facilities that dislikes vibration in order to reduce daily vibration. In general, vibration isolation devices are intended for high frequency and small amplitude range. However, it is difficult to cut off both vibration region caused by flying object collision and seismic motion with existing technologies. The authors propose insulation of equipment and vibration transmitted through the floor by floating equipment, and have. We have devised and built an air floating device that operates when a trigger input is applied to save the energy of this dynamically acting device. It was estimated by numerical calculation that the aero floating device keeps lifting stably in the condition with the air pressure in the auxiliary air chamber about 75 to 80 kPa. The performance specifications of the proposed device were verified from shaking table test. As a result, the effect of reducing the maximum acceleration by about 1/5 against the seismic motion of El Centro NS, Taft NS, Tohoku NS, and Hachinohe EW was confirmed by floating the mass on the frame assuming the equipment. From the obtained power spectrum diagram (PSD) of the response acceleration, it was confirmed that all frequency components up to 25 Hz is reduced by using proposed aero floating base isolation device.


Sign in / Sign up

Export Citation Format

Share Document