Effect of Molecular Weight (MW) and End-Groups on the Thermal and Lewis-Acid Catalyzed Decomposition of Fomblin Z-Type Lubricants

Author(s):  
Lei Li ◽  
Paul M. Jones ◽  
Alexei G. Merzlikine ◽  
Yiao-Tee Hsia

The high-temperature stability of disk lubricants has attracted a lot of interest in recent years because smaller head-media spacing may cause head-media contact and thus a local temperature rise. At elevated temperatures, the lubricant may either evaporate or decompose, leading to the eventual failure of the head-media interface. The decomposition might result from heating and/or may be catalyzed by the presence of a Lewis acid site at the head-disk interface (HDI). In this paper, we study how the chemical structure, namely, molecular weight (MW) and end-groups (see Fig. 1), of disk lubricants will affect the thermal and Lewis-acid catalyzed decomposition of the lubricant.

The temperature factor is one of the limiting factors for obtaining high yields of crops, so one of the main tasks of selection is to search for temperature-resistant genotypes and to create on their basis the banks of crops with high temperature stability. The first step to solving this problem is to conduct a rapid assessment of the temperature plasticity of large populations and to isolate breeding-valuable genotypes from them. There are numerous methods that allow, in the short term with minimal technical and material costs, to carry out an initial assessment of a large number of genotypes at sporophytic level and differentiate them by resistance to the temperature factor. These methods include the method of estimating pollen populations. These studies have repeatedly been conducted on many cultures, their correctness is due to the expression of a large part of the plant genome, both at the diploid and haploid levels of development and demonstrated by many studies in this direction. The aim of our study was to study the stability of gametophyte and sporophyte of collecting varieties and varieties of winter rape to elevated temperatures, to study the correlation between the heat resistance of sporophyte and gametophyte.


Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 94 ◽  
Author(s):  
Ke Zhang ◽  
Maoyuan Zhu ◽  
Bitong Lan ◽  
Ping Liu ◽  
Wei Li ◽  
...  

High-strength medium-carbon martensitic steel was heat treated through a quenching-partitioning-tempering (Q-P-T) treatment. Both the mechanism for improved ductility and the high temperature stability of austenite were investigated. The Q-P-T martensitic steel showed good products of strength and elongation (PSE) at various deformation temperatures ranging within 25–350 °C. The optimum PSE value (>57,738 MPa%) was achieved at 200 °C. The microstructure of the Q-P-T steel is constituted of laths martensite with dislocations, retained austenite located within lath martensite and small niobium carbides (NbC), and/or transitional ε-carbides that precipitated in the lath martensite. The good ductility can be mainly attributed to the laminar-like austenite that remained within the lath-martensite. The austenite can effectively enhance ductility through the effect of dislocation absorption by the retained austenite and through transformation-induced plasticity. The relationship between the microstructures and mechanical properties was investigated at high deformation temperatures.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (3) ◽  
pp. 169-172 ◽  
Author(s):  
Scott A. Barnett ◽  
Anita Madan ◽  
Ilwon Kim ◽  
Keith Martin

AbstractThis article reviews two topics related to the stability of hard coatings composed of nanometer-thick layers: epitaxial stabilization and high-temperature stability. Early work on nanolayered hard coatings demonstrated large hardness increases as compared with monolithic coatings, but it was subsequently found that the layers interdiffused at elevated temperatures. More recently, it has been shown that nanolayers exhibit good stability at elevated temperatures if the layer materials are thermodynamically stable with respect to each other and are able to form low-energy coherent interfaces. This article discusses metal/nitride, nitride/nitride, and nitride/boride nanolayers that exhibit good high-temperature stability and hardness values that are maintained (or even increase) after high-temperature annealing. Epitaxial stabilization of nonequilibrium structuresin thin layers is a well-known phenomenon that has been applied to hard nitride materials. In particular, AlN, which crystallizes in the hexagonal wurtzite structure in bulk form, was stabilized in the rock-salt cubic structure in nitride/nitride nanolayers (e.g., AlN/TiN). These results and the current understanding of epitaxial stabilization in hard nanolayers are discussed.


1999 ◽  
Vol 122 (1) ◽  
pp. 13-18 ◽  
Author(s):  
H. Klemm ◽  
M. Herrmann ◽  
C. Schubert

The present study is focussed on the oxidation behavior of nonoxide silicon-based ceramics. Various Si3N4 and SiC ceramics were examined after long term oxidation tests (up to 5000 h) at 1500°C in ambient air. The damage mechanisms were discussed on the basis of a comprehensive chemical and microstructural analysis of the materials after the oxidation tests. The diffusion of oxygen into the material and its further reaction in the bulk of the material were found to be the most critical factors during long term oxidation treatment at elevated temperatures. However, the resulting damage in the microstructure of the materials can be significantly reduced by purposeful microstructural engineering. Using Si3N4/SiC and Si3N4/MoSi2 composite materials provides the possibility to improve the high temperature stability. [S0742-4795(00)00301-X]


Alloy Digest ◽  
1961 ◽  
Vol 10 (8) ◽  

Abstract REFRACTALOY 70 is a super heat and oxidation resistant alloy containing high percentages of nickel, chromium, cobalt and molybdenum. It has an exceedingly low creep rate at elevated temperatures and shows marked high temperature stability. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Co-2. Producer or source: Westinghouse Electric Corporation. Originally published July 1953, revised August 1961.


Alloy Digest ◽  
2021 ◽  
Vol 70 (12) ◽  

Abstract Smiths Ti-6Al-2Sn-4Zr-2Mo-Si is a near-alpha titanium alloy that was developed for use at elevated temperatures. It exhibits high strength and toughness, excellent creep resistance, and high temperature stability at temperatures up 550 °C (1020 °F). This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, and joining. Filing Code: Ti-185. Producer or source: Smiths Metal Centres Limited.


2010 ◽  
Vol 63 (8) ◽  
pp. 1227 ◽  
Author(s):  
Jakov Kulis ◽  
Craig A. Bell ◽  
Aaron S. Micallef ◽  
Michael J. Monteiro

The single electron transfer-nitroxide radical coupling (SET-NRC) reaction has been used to produce multiblock polymers with high molecular weights in under 3 min at 50°C by coupling a difunctional telechelic polystyrene (Br-PSTY-Br) with a dinitroxide. The well known combination of dimethyl sulfoxide as solvent and Me6TREN as ligand facilitated the in situ disproportionation of CuIBr to the highly active nascent Cu0 species. This SET reaction allowed polymeric radicals to be rapidly formed from their corresponding halide end-groups. Trapping of these carbon-centred radicals at close to diffusion controlled rates by dinitroxides resulted in high-molecular-weight multiblock polymers. Our results showed that the disproportionation of CuI was critical in obtaining these ultrafast reactions, and confirmed that activation was primarily through Cu0. We took advantage of the reversibility of the NRC reaction at elevated temperatures to decouple the multiblock back to the original PSTY building block through capping the chain-ends with mono-functional nitroxides. These alkoxyamine end-groups were further exchanged with an alkyne mono-functional nitroxide (TEMPO–≡) and ‘clicked’ by a CuI-catalyzed azide/alkyne cycloaddition (CuAAC) reaction with N3–PSTY–N3 to reform the multiblocks. This final ‘click’ reaction, even after the consecutive decoupling and nitroxide-exchange reactions, still produced high-molecular-weight multiblocks efficiently. These SET-NRC reactions would have ideal applications in re-usable plastics and possibly as self-healing materials.


1981 ◽  
Vol 54 (2) ◽  
pp. 374-402 ◽  
Author(s):  
C. K. Riew

Abstract Amine terminated reactive liquid polymers (AT-RLP) are synthesized from corresponding carboxyl terminated reactive liquid polymers (CT-RLP) and diamines. The CT-RLPs have a functionality of close to two, the average molecular weight ranging from 2500 to 4000, and Brookfield viscosity ranging from 30 to 600 Pa · s at 27°C. AT-RLPs made from the CT-RLPs have about the same physical properties as the CT-RLPs given above. N-(2-aminoethyl)piperazine (AEP2) is the best diamine among the diamines tried to produce low viscosity and low molecular weight AT-RLPs. Structure of end-groups of AT-RLP is unequivocally identified as a secondary amide and a secondary amine group resulting from the reaction of carboxyl end-groups of CT-RLP and a primary amine group of AEP,. The AT-RLP can be used as a modifier for epoxy resins at room or elevated temperatures to produce castable formulations with properties ranging from plastics to elastomers. The formulations may be useful as a modifier for improvement of crack and/or impact resistance of normally brittle epoxy plastics, as castable elastomers, paints and coatings, sealants, adhesives, especially as solventless adhesives for conveyor belts, hoses, shoes, and as binders for woven or non-woven fibers and cords.


Sign in / Sign up

Export Citation Format

Share Document