High-speed microfluidic thermal stimulator for temperature-activated ion channel studies

2007 ◽  
Author(s):  
Thomas Pennell ◽  
Jianbin Wang ◽  
Susan Z. Hua
2018 ◽  
Vol 115 (41) ◽  
pp. 10333-10338 ◽  
Author(s):  
Yi Ruan ◽  
Kevin Kao ◽  
Solène Lefebvre ◽  
Arin Marchesi ◽  
Pierre-Jean Corringer ◽  
...  

Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated, cation-selective channel, is a prokaryotic homolog of the pentameric Cys-loop receptor ligand-gated ion channel family. Despite large changes in ion conductance, small conformational changes were detected in X-ray structures of detergent-solubilized GLIC at pH 4 (active/desensitized state) and pH 7 (closed state). Here, we used high-speed atomic force microscopy (HS-AFM) combined with a buffer exchange system to perform structural titration experiments to visualize GLIC gating at the single-molecule level under native conditions. Reference-free 2D classification revealed channels in multiple conformational states during pH gating. We find changes of protein–protein interactions so far elusive and conformational dynamics much larger than previously assumed. Asymmetric pentamers populate early stages of activation, which provides evidence for an intermediate preactivated state.


2020 ◽  
Vol 118 (3) ◽  
pp. 56a
Author(s):  
Raghavendar Reddy Sanganna Gari ◽  
George R. Heath ◽  
Crina M. Nimigean ◽  
Simon Scheuring

2019 ◽  
Author(s):  
V Shlyonsky ◽  
D Gall

AbstractWe propose an upgraded version of our previously designed open-source lipid bilayer amplifier. This improved amplifier is now suitable both for the use in introductory courses in biophysics and neurosciences at the undergraduate level and for scientific research. Similar to its predecessor, the OpenPicoAmp-100k is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. It consists of the high-speed headstage, followed by voltage-gain amplifier with built-in 6-order Bessel filter. The amplifier has a bandwidth of 100 kHz in the presence of 100 pF input membrane capacitance and is capable of measuring ion channel current with amplitudes from sub-pA and up to ±4 nA. At the full bandwidth and with a 1 GΩ transimpedance gain, the amplifier shows 12 pArms noise with an open input and 112 pArms noise in the presence of 100 pF input capacitance, while at the 5 kHz bandwidth (typical in single-channel experiments) noise amounts to 0.45 pArms and 2.11 pArms, respectively. Using an optocoupler circuit producing TTL-controlled current impulses and using 50% threshold analysis we show that at full bandwidth the amplifier has deadtimes of 3.5 µs and 5 µs at signal-to-noise ratios(SNR) of 9 and 1.7, respectively. Near 100% of true current impulses longer than 5 µs and 6.6 µs are detected at these two respective SNRs, while false event detection rate remains acceptably low. The wide bandwidth of the amplifier was confirmed in bilayer experiments with alamethicin, for which open ion channel current events shorter that 10 µs could be resolved.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
J. E. Johnson

In the early years of biological electron microscopy, scientists had their hands full attempting to describe the cellular microcosm that was suddenly before them on the fluorescent screen. Mitochondria, Golgi, endoplasmic reticulum, and other myriad organelles were being examined, micrographed, and documented in the literature. A major problem of that early period was the development of methods to cut sections thin enough to study under the electron beam. A microtome designed in 1943 moved the specimen toward a rotary “Cyclone” knife revolving at 12,500 RPM, or 1000 times as fast as an ordinary microtome. It was claimed that no embedding medium was necessary or that soft embedding media could be used. Collecting the sections thus cut sounded a little precarious: “The 0.1 micron sections cut with the high speed knife fly out at a tangent and are dispersed in the air. They may be collected... on... screens held near the knife“.


Sign in / Sign up

Export Citation Format

Share Document