Characterization of MEMS FTIR spectrometer

Author(s):  
Diaa Khalil ◽  
Yasser Sabry ◽  
Haitham Omran ◽  
Mostafa Medhat ◽  
Amr Hafez ◽  
...  
Keyword(s):  
2013 ◽  
Vol 717 ◽  
pp. 133-138
Author(s):  
A. Awad Allah ◽  
M. Elhadi ◽  
O.A. Yassien

The crystal structure of both samples has been solved by powder X-ray diffraction, data in the tetragonal space group I4/m (a= b= 5.55182 Å, c =7.86955 A0) for SrLaFeNi0.5W0.5O6sample and (a=b= 5.49129Å, c= 7.82233Å) for CaLaFeNi0.5W0.5O6 sample, and shows an almost perfect ordering between Ni2+ and W5+ cations at the B-site of the perovskite structure. The FTIR spectrometer used of the powders showed that the spectra of both are very similar, showing two strong and well-defined absorption bands, typical of perovskite materials.


2021 ◽  
Vol 891 ◽  
pp. 77-82
Author(s):  
Sharyjel R. Cayabyab ◽  
Josefina R. Celorico ◽  
Cyron L. Custodio ◽  
Blessie A. Basilia

Utilization of natural biopolymers has shown potential in generating innovations for tissue engineering applications. This study aims to fabricate scaffolds from cellulose acetate derived from kapok fiber. Cellulose is extracted from raw kapok fibers by alkali treatment and delignification then synthesized into cellulose acetate. Kapok cellulose acetate (KCA) is dissolved in dimethyl sulfoxide to fabricate the scaffold. Materials were characterized using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectrometer, X-ray diffractometer (XRD) and Differential Scanning Calorimeter (DSC). FTIR analysis has shown that cellulose was extracted from kapok and cellulose acetate was successfully synthesized. XRD analysis also confirmed the presence of cellulose acetate. Results have also shown that synthesized KCA seems to have higher crystallinity than commercially available cellulose acetate (CCA). The degree of substitution (DS) of KCA was found to be 2.85 which is close to the DS value of tri-substituted cellulose acetate. DSC analysis has shown lower glass transition temperature of 52.15°C but higher degradation temperature of 300.43°C than the CCA. Moreover, the values for the enthalpy of fusion for two endotherms of KCA (44.0556 J/g and 18.6946 J/g) are higher than the values for CCA by 344% and 261%, respectively; thus, indicating the higher degree of crystallinity for synthesized KCA samples.


The Analyst ◽  
2015 ◽  
Vol 140 (5) ◽  
pp. 1702-1710 ◽  
Author(s):  
Eleonora Imperio ◽  
Gabriele Giancane ◽  
Ludovico Valli

A completely non-destructive analysis has been achieved using an ATR-FTIR spectrometer and the filtered laser beam, focalized by the Raman microscope objective lens.


2021 ◽  
Author(s):  
Lucie Riu ◽  
Rosario Brunetto ◽  
John Carter ◽  
Brigitte Gondet ◽  
Vincent Hamm ◽  
...  

<p><strong>Introduction:</strong> On December 6, 2020, the Hayabusa2 mission successfully returned to Earth ~ 5.4 g of samples collected at the surface of the C-type asteroid Ruygu [1,2]. Its surface was first sampled on February 22, 2019, then on July 12, 2019, close to a 10-meter large artificial crater, so as to possibly access sub-surface material [3]. The collected samples are now kept at the Extraterrestrial Samples Curation Center of JAXA at ISAS in Sagamihara, Japan, for a first round of preliminary analyses, with the objective to characterize in a non-destructive manner both the bulk samples and a few hundreds of grains extracted from them [4]. In particular, the objective is 1) to support their further detailed characterization by the international initial analysis teams, which will start their activity in July 2021, and 2) to catalog the grains, accessible to the international community through AO selection, starting mid-2022.</p> <p>The preliminary characterization of these samples is being conducted with a visible microscope with four color filters, a FTIR spectrometer operating in the 1-5 µm range and MicrOmega, a hyperspectral NIR microscope developed at Institut d'Astrophysique Spatiale (Université Paris-Saclay/CNRS, Orsay, France), operating in the near-infrared range (0.99-3.65 µm) [5]. It is noteworthy that never before have the preliminary analyses of returned extraterrestrial samples included the characterization by a NIR hyperspectral microscope.</p> <p><strong>Results: </strong>Preliminary outcomes of the analyses performed with MicrOmega will be presented at the conference. In particular, the question of the representativity of the samples collected by the Hayabusa2 spacecraft will be addressed thanks to the comparison of the spectra obtained by MicrOmega and the NIRS3 remote sensing IR spectrometer [6] which performed a spectral characterization (1.8-3.2 µm) of Ryugu's surface, including the sites of the samples' collection [7,8]. A preliminary analysis of the spatial compositional heterogeneity will be presented. Specific signatures, detected in grains typically present in <1% of the pixels, but of high relevance regarding the processes determining Ryugu formation and evolution, will also be discussed.</p> <p><strong>References: </strong>[1] Binzel R. P. et al. (2002), Physical Properties of Near-Earth Objects. pp. 255-271, [2] Vilas F. (2008) <em>The Astronomical Journal</em> 135 (4), 1101-1105, [3] Morota et al. (2020) <em>Science</em> 368, Issue 6491, pp. 654-659, [4] Yada T. et al., in preparation, [5] Bibring J.-P. et al. (2017) <em>Astrobiology</em> 17, Issue 6-7, pp.621-626, [6] Iwata T. et al. (2017) <em>Space Science Reviews</em> 208 (1-4), 317-337, [7] Kitazato K. et al. (2019) <em>Science</em> 364 (6437), 272-275, [8] Kitazato K. et al. (2020) <em>Nature Astronomy</em>, Volume 5, p. 246-250.</p>


Author(s):  
B. L. Soloff ◽  
T. A. Rado

Mycobacteriophage R1 was originally isolated from a lysogenic culture of M. butyricum. The virus was propagated on a leucine-requiring derivative of M. smegmatis, 607 leu−, isolated by nitrosoguanidine mutagenesis of typestrain ATCC 607. Growth was accomplished in a minimal medium containing glycerol and glucose as carbon source and enriched by the addition of 80 μg/ ml L-leucine. Bacteria in early logarithmic growth phase were infected with virus at a multiplicity of 5, and incubated with aeration for 8 hours. The partially lysed suspension was diluted 1:10 in growth medium and incubated for a further 8 hours. This permitted stationary phase cells to re-enter logarithmic growth and resulted in complete lysis of the culture.


Author(s):  
A.R. Pelton ◽  
A.F. Marshall ◽  
Y.S. Lee

Amorphous materials are of current interest due to their desirable mechanical, electrical and magnetic properties. Furthermore, crystallizing amorphous alloys provides an avenue for discerning sequential and competitive phases thus allowing access to otherwise inaccessible crystalline structures. Previous studies have shown the benefits of using AEM to determine crystal structures and compositions of partially crystallized alloys. The present paper will discuss the AEM characterization of crystallized Cu-Ti and Ni-Ti amorphous films.Cu60Ti40: The amorphous alloy Cu60Ti40, when continuously heated, forms a simple intermediate, macrocrystalline phase which then transforms to the ordered, equilibrium Cu3Ti2 phase. However, contrary to what one would expect from kinetic considerations, isothermal annealing below the isochronal crystallization temperature results in direct nucleation and growth of Cu3Ti2 from the amorphous matrix.


Author(s):  
B. H. Kear ◽  
J. M. Oblak

A nickel-base superalloy is essentially a Ni/Cr solid solution hardened by additions of Al (Ti, Nb, etc.) to precipitate a coherent, ordered phase. In most commercial alloy systems, e.g. B-1900, IN-100 and Mar-M200, the stable precipitate is Ni3 (Al,Ti) γ′, with an LI2structure. In A lloy 901 the normal precipitate is metastable Nis Ti3 γ′ ; the stable phase is a hexagonal Do2 4 structure. In Alloy 718 the strengthening precipitate is metastable γ″, which has a body-centered tetragonal D022 structure.Precipitate MorphologyIn most systems the ordered γ′ phase forms by a continuous precipitation re-action, which gives rise to a uniform intragranular dispersion of precipitate particles. For zero γ/γ′ misfit, the γ′ precipitates assume a spheroidal.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Sign in / Sign up

Export Citation Format

Share Document