scholarly journals Chromatin-based reprogramming of a courtship regulator by concurrent pheromone perception and hormone signaling

2020 ◽  
Vol 6 (21) ◽  
pp. eaba6913 ◽  
Author(s):  
Songhui Zhao ◽  
Bryson Deanhardt ◽  
George Thomas Barlow ◽  
Paulina Guerra Schleske ◽  
Anthony M. Rossi ◽  
...  

To increase fitness, animals use both internal and external states to coordinate reproductive behaviors. The molecular mechanisms underlying this coordination remain unknown. Here, we focused on pheromone-sensing Drosophila Or47b neurons, which exhibit age- and social experience–dependent increase in pheromone responses and courtship advantage in males. FruitlessM (FruM), a master regulator of male courtship behaviors, drives the effects of social experience and age on Or47b neuron responses and function. We show that simultaneous exposure to social experience and age-specific juvenile hormone (JH) induces chromatin-based reprogramming of fruM expression in Or47b neurons. Group housing and JH signaling increase fruM expression in Or47b neurons and active chromatin marks at fruM promoter. Conversely, social isolation or loss of JH signaling decreases fruM expression and increases repressive marks around fruM promoter. Our results suggest that fruM promoter integrates coincident hormone and pheromone signals driving chromatin-based changes in expression and ultimately neuronal and behavioral plasticity.

2021 ◽  
Author(s):  
Pelin C Volkan ◽  
Bryson Deanhardt ◽  
Qichen Duan ◽  
Chengcheng Du ◽  
Charles Soeder ◽  
...  

Social experience and pheromone signaling in ORNs affect pheromone responses and male courtship behaviors in Drosophila, however, the molecular mechanisms underlying this circuit-level neuromodulation remain less clear. Previous studies identified social experience and pheromone signaling-dependent modulation of chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male behaviors. To identify the molecular mechanisms driving social experience-dependent neuromodulation, we performed RNA-seq from antennal samples of mutant fruit flies in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. We found that loss of pheromone detection differentially alters the levels of fruitless exons suggesting changes in splicing patterns. In addition, many Fruitless target neuromodulatory genes, such as neurotransmitter receptors, ion channels, and ion transporters, are differentially regulated by social context and pheromone signaling. Our results suggest that modulation of circuit activity and behaviors in response to social experience and pheromone signaling arise due to changes in transcriptional programs for neuromodulators downstream of behavioral switch gene function.


2020 ◽  
Author(s):  
Isaiah Taylor ◽  
Kevin Lehner ◽  
Erin McCaskey ◽  
Niba Nirmal ◽  
Yasemin Ozkan-Aydin ◽  
...  

Abstract:Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for oscillatory root tip movement known as circumnutation. Here we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the gene Oryza sativa Histidine Kinase-1/OsHK1, as well as the auxin influx carrier gene OsAUX1, as essential regulators of this process in rice. Robophysical modelling demonstrated the benefits of tip movement for navigating past obstacles, prompting us to challenge mutant and wild-type plants with different substrates. Consistent with model behavior, root circumnutation facilitated exploration of a solid surface and promoted seedling establishment in rocky soil. Thus, the integration of robotics, physics and biology elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation.One sentence summaryCircumnutation facilitates root exploration.


2021 ◽  
Vol 118 (8) ◽  
pp. e2018940118 ◽  
Author(s):  
Isaiah Taylor ◽  
Kevin Lehner ◽  
Erin McCaskey ◽  
Niba Nirmal ◽  
Yasemin Ozkan-Aydin ◽  
...  

Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for helical root tip movement known as circumnutation. Here, we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the gene Oryza sativa histidine kinase-1 (HK1) as well as the auxin influx carrier gene OsAUX1 as essential regulators of this process in rice. Robophysical modeling and growth challenge experiments indicate circumnutation is critical for seedling establishment in rocky soil, consistent with the long-standing hypothesis that root circumnutation facilitates growth past obstacles. Thus, the integration of robotics, physics, and biology has elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation.


2018 ◽  
Author(s):  
Stacy A. Malaker ◽  
Kayvon Pedram ◽  
Michael J. Ferracane ◽  
Elliot C. Woods ◽  
Jessica Kramer ◽  
...  

<div> <div> <div> <p>Mucins are a class of highly O-glycosylated proteins that are ubiquitously expressed on cellular surfaces and are important for human health, especially in the context of carcinomas. However, the molecular mechanisms by which aberrant mucin structures lead to tumor progression and immune evasion have been slow to come to light, in part because methods for selective mucin degradation are lacking. Here we employ high resolution mass spectrometry, polymer synthesis, and computational peptide docking to demonstrate that a bacterial protease, called StcE, cleaves mucin domains by recognizing a discrete peptide-, glycan-, and secondary structure- based motif. We exploited StcE’s unique properties to map glycosylation sites and structures of purified and recombinant human mucins by mass spectrometry. As well, we found that StcE will digest cancer-associated mucins from cultured cells and from ovarian cancer patient-derived ascites fluid. Finally, using StcE we discovered that Siglec-7, a glyco-immune checkpoint receptor, specifically binds sialomucins as biological ligands, whereas the related Siglec-9 receptor does not. Mucin-specific proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of glycoprotein structure and function and for deorphanizing mucin-binding receptors. </p> </div> </div> </div>


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


2021 ◽  
Vol 7 (2) ◽  
pp. 30
Author(s):  
Laeya Baldini ◽  
Bruno Charpentier ◽  
Stéphane Labialle

Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.


2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


Author(s):  
Yiping Hu ◽  
Juan He ◽  
Lianhua He ◽  
Bihua Xu ◽  
Qingwen Wang

AbstractTransforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.


Marine Drugs ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 145 ◽  
Author(s):  
Rachael Mansbach ◽  
Timothy Travers ◽  
Benjamin McMahon ◽  
Jeanne Fair ◽  
S. Gnanakaran

Marine cone snails are carnivorous gastropods that use peptide toxins called conopeptides both as a defense mechanism and as a means to immobilize and kill their prey. These peptide toxins exhibit a large chemical diversity that enables exquisite specificity and potency for target receptor proteins. This diversity arises in terms of variations both in amino acid sequence and length, and in posttranslational modifications, particularly the formation of multiple disulfide linkages. Most of the functionally characterized conopeptides target ion channels of animal nervous systems, which has led to research on their therapeutic applications. Many facets of the underlying molecular mechanisms responsible for the specificity and virulence of conopeptides, however, remain poorly understood. In this review, we will explore the chemical diversity of conopeptides from a computational perspective. First, we discuss current approaches used for classifying conopeptides. Next, we review different computational strategies that have been applied to understanding and predicting their structure and function, from machine learning techniques for predictive classification to docking studies and molecular dynamics simulations for molecular-level understanding. We then review recent novel computational approaches for rapid high-throughput screening and chemical design of conopeptides for particular applications. We close with an assessment of the state of the field, emphasizing important questions for future lines of inquiry.


Sign in / Sign up

Export Citation Format

Share Document