scholarly journals Enhanced Zika virus susceptibility of globally invasive Aedes aegypti populations

Science ◽  
2020 ◽  
Vol 370 (6519) ◽  
pp. 991-996
Author(s):  
Fabien Aubry ◽  
Stéphanie Dabo ◽  
Caroline Manet ◽  
Igor Filipović ◽  
Noah H. Rose ◽  
...  

The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world’s tropical belt over the past four centuries, after the evolution of a “domestic” form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector–host contact but also as a result of enhanced vector susceptibility.

Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 265 ◽  
Author(s):  
Didier Fontenille ◽  
Jeffrey R. Powell

The past few decades have seen the emergence of several worldwide arbovirus epidemics (chikungunya, Zika), the expansion or recrudescence of historical arboviruses (dengue, yellow fever), and the modification of the distribution area of major vector mosquitoes such as Aedes aegypti and Ae. albopictus, raising questions about the risk of appearance of new vectors and new epidemics. In this opinion piece, we review the factors that led to the emergence of yellow fever in the Americas, define the conditions for a mosquito to become a vector, analyse the recent example of the new status of Aedes albopictus from neglected mosquito to major vector, and propose some scenarios for the future.


2020 ◽  
Vol 42 (3) ◽  
Author(s):  
André Emanuel Dantas Mercês ◽  
Angela de Souza Cajuhi ◽  
Lorena Conceição Souza dos Santos ◽  
Rudval Souza da Silva ◽  
Cleuma Sueli Santos Suto ◽  
...  

O Zika vírus é um arbovírus transmitido pela picada dos mosquitos Aedes aegypti e Aedes albopictus infectados e apresentam como principais manifestações clínicas: febre aguda, exantema, prurido e conjuntivite. Em 2015 causou uma epidemia no Brasil, desencadeando casos de microcefalia em bebês cujas gestantes tiveram a febre da Zika. O Nordeste notificou o maior número de casos. Objetivou-se identificar, a partir de uma revisão integrativa, a relação entre a febre da Zika e a microcefalia. Trata-se de revisão integrativa, realizada a partir de buscas desenvolvidas nas bases de dados da Biblioteca Virtual em Saúde (BVS) e da Scientific Electronic Library Online (SciELO) com publicações dos anos de 2015 e 2016, idiomas português e inglês. Foram encontradas 191 publicações, as quais passaram por um processo de leitura e análise quanto ao atendimento do objetivo e aplicação dos critérios de inclusão. Restaram oito publicações que integraram o corpus desta revisão. Os resultados apontam para uma relação de causa e efeito entre o contato das gestantes com o Zika vírus e o desenvolvimento de microcefalia em seus bebês. Necessita-se de maiores evidências que demonstrem os reais fatores envolvidos nesse processo, como os genéticos, ambientais e até mesmo interferência de outras infecções. Palavras-chave: Zika vírus. Microcefalia. Aplicações da epidemiologia.


Author(s):  
Rebecca A Zimler ◽  
Donald A Yee ◽  
Barry W Alto

Abstract Recurrence of local transmission of Zika virus in Puerto Rico is a major public health risk to the United States, where mosquitoes Aedes aegypti (Linnaeus) and Aedes mediovittatus (Coquillett) are abundant. To determine the extent to which Ae. mediovittatus are capable of transmitting Zika virus and the influence of viremia, we evaluated infection and transmission in Ae. mediovittatus and Ae. aegypti from Puerto Rico using serial dilutions of infectious blood. Higher doses of infectious blood resulted in greater infection rates in both mosquitoes. Aedes aegypti females were up to twice as susceptible to infection than Ae. mediovittatus, indicating a more effective midgut infection barrier in the latter mosquito species. Aedes aegypti exhibited higher disseminated infection (40–95%) than Ae. mediovittatus (<5%), suggesting a substantial midgut escape barrier in Ae. mediovittatus. For Ae. aegypti, transmission rates were low over a range of doses of Zika virus ingested, suggesting substantial salivary gland barriers.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lourdes G. Talavera-Aguilar ◽  
Reyes A. Murrieta ◽  
Sungmin Kiem ◽  
Rosa C. Cetina-Trejo ◽  
Carlos M. Baak-Baak ◽  
...  

Abstract Background Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) with an urban transmission cycle that primarily involves humans and Aedes aegypti. Evidence suggests that the evolution of some arboviruses is constrained by their dependency on alternating between disparate (vertebrate and invertebrate) hosts. The goals of this study are to compare the genetic changes that occur in ZIKV after serial passaging in mosquito or vertebrate cell lines or alternate passaging in both cell types and to compare the replication, dissemination, and transmission efficiencies of the cell culture-derived viruses in Ae. aegypti. Methods An isolate of ZIKV originally acquired from a febrile patient in Yucatan, Mexico, was serially passaged six times in African green monkey kidney (Vero) cells or Aedes albopictus (C6/36) cells or both cell types by alternating passage. A colony of Ae. aegypti from Yucatan was established, and mosquitoes were challenged with the cell-adapted viruses. Midguts, Malpighian tubules, ovaries, salivary glands, wings/legs and saliva were collected at various times after challenge and tested for evidence of virus infection. Results Genome sequencing revealed the presence of two non-synonymous substitutions in the premembrane and NS1 regions of the mosquito cell-adapted virus and two non-synonymous substitutions in the capsid and NS2A regions of both the vertebrate cell-adapted and alternate-passaged viruses. Additional genetic changes were identified by intrahost variant frequency analysis. Virus maintained by continuous C6/36 cell passage was significantly more infectious in Ae. aegypti than viruses maintained by alternating passage and consecutive Vero cell passage. Conclusions Mosquito cell-adapted ZIKV displayed greater in vivo fitness in Ae. aegypti compared to the other viruses, indicating that obligate cycling between disparate hosts carries a fitness cost. These data increase our understanding of the factors that drive ZIKV adaptation and evolution and underscore the important need to consider the in vivo passage histories of flaviviruses to be evaluated in vector competence studies. Graphic abstract "Image missing"


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rommel J. Gestuveo ◽  
Jamie Royle ◽  
Claire L. Donald ◽  
Douglas J. Lamont ◽  
Edward C. Hutchinson ◽  
...  

AbstractThe escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.


Author(s):  
Shawna Bellamy ◽  
Barry W Alto

Abstract Non-lethal predator-prey interactions during the immature stages can cause significant changes to mosquito life history traits and their ability to transmit pathogens as adults. Treatment manipulations using mosquitoes Aedes aegypti (L.) and Toxoryhnchites rutilus (Coquillett) were performed during the immature stages to explore the potential impacts of non-lethal interactions on adult susceptibility to infection, disseminated infection and saliva infection of Ae. aegypti following ingestion of Zika virus-infected blood. Treatments inducing density reduction resulted in reduced development time and survivorship to adulthood. However, effects of treatment did not alter infection, dissemination, or saliva infection. These observations indicate that, while non-lethal predation may impact some traits that influence population dynamics and transmission of pathogens, there were no direct effects on mosquito-arbovirus interactions.


Author(s):  
Melisa B Bonica ◽  
Dario E Balcazar ◽  
Ailen Chuchuy ◽  
Jorge A Barneche ◽  
Carolina Torres ◽  
...  

Abstract Diseases caused by flaviviruses are a major public health burden across the world. In the past decades, South America has suffered dengue epidemics, the re-emergence of yellow fever and St. Louis encephalitis viruses, and the introduction of West Nile and Zika viruses. Many insect-specific flaviviruses (ISFs) that cannot replicate in vertebrate cells have recently been described. In this study, we analyzed field-collected mosquito samples from six different ecoregions of Argentina to detect flaviviruses. We did not find any RNA belonging to pathogenic flaviviruses or ISFs in adults or immature stages. However, flaviviral-like DNA similar to flavivirus NS5 region was detected in 83–100% of Aedes aegypti (L.). Despite being previously described as an ancient element in the Ae. aegypti genome, the flaviviral-like DNA sequence was not detected in all Ae. aegypti samples and sequences obtained did not form a monophyletic group, possibly reflecting the genetic diversity of mosquito populations in Argentina.


2019 ◽  
Vol 57 (3) ◽  
pp. 957-961
Author(s):  
Kyran M Staunton ◽  
Barukh B Rohde ◽  
Michael Townsend ◽  
Jianyi Liu ◽  
Mark Desnoyer ◽  
...  

Abstract Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape.


2017 ◽  
Vol 6 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Chun-xiao Li ◽  
Xiao-xia Guo ◽  
Yong-qiang Deng ◽  
Dan Xing ◽  
Ai-juan Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document