Pinpointing cysteine oxidation sites by high-resolution proteomics reveals a mechanism of redox-dependent inhibition of human STING

2021 ◽  
Vol 14 (680) ◽  
pp. eaaw4673
Author(s):  
Natalia Zamorano Cuervo ◽  
Audray Fortin ◽  
Elise Caron ◽  
Stéfany Chartier ◽  
Nathalie Grandvaux

Protein function is regulated by posttranslational modifications (PTMs), among which reversible oxidation of cysteine residues has emerged as a key regulatory mechanism of cellular responses. Given the redox regulation of virus-host interactions, the identification of oxidized cysteine sites in cells is essential to understand the underlying mechanisms involved. Here, we present a proteome-wide identification of reversibly oxidized cysteine sites in oxidant-treated cells using a maleimide-based bioswitch method coupled to mass spectrometry analysis. We identified 2720 unique oxidized cysteine sites within 1473 proteins with distinct abundances, locations, and functions. Oxidized cysteine sites were found in numerous signaling pathways, many relevant to virus-host interactions. We focused on the oxidation of STING, the central adaptor of the innate immune type I interferon pathway, which is stimulated in response to the detection of cytosolic DNA by cGAS. We demonstrated the reversible oxidation of Cys148 and Cys206 of STING in cells. Molecular analyses led us to establish a model in which Cys148 oxidation is constitutive, whereas Cys206 oxidation is inducible by oxidative stress or by the natural ligand of STING, 2′3′-cGAMP. Our data suggest that the oxidation of Cys206 prevented hyperactivation of STING by causing a conformational change associated with the formation of inactive polymers containing intermolecular disulfide bonds. This finding should aid the design of therapies targeting STING that are relevant to autoinflammatory disorders, immunotherapies, and vaccines.

2021 ◽  
Vol 50 (1) ◽  
pp. 47-59
Author(s):  
Santokh Gill ◽  
Meghan Kavanagh ◽  
Christine Poirier ◽  
Ruixi Xie ◽  
Terry Koerner

Furan is a volatile compound formed during the thermal processing of foods. Chronic exposure has been shown to cause cholangiocarcinoma and hepatocellular tumors in rodent models. We conducted a 90 day subchronic study in Fisher 344 rats exposed to various doses by gavage to determine the NOAEL. Previous reports have outlined changes in the liver using gross necropsy examination, histopathology, clinical biochemistry, hematology, immunohistochemistry, and toxicogenomics. The data revealed that males were more sensitive than females. The focus of this study was to evaluate the toxicoproteomic changes by 2-dimensional differential in gel electrophoresis followed by mass spectrometry analysis. To compliment previous studies, protein expression changes were evaluated of male animals after 90 days of exposure to doses of 0, 0.03, 0.5, and 8.0 mg/kg bw/d. Significant statistical treatment-related changes compared to the controls identified 45 protein spots containing 38 unique proteins. Proteins identified are implicated in metabolism, redox regulation, protein folding/proteolysis as well as structural and transport proteins. At lower doses, multiple cytoprotective pathways are activated to maintain a homeostasis but ultimately the loss of protein function and impairment of several pathways could lead to adverse health effects at higher doses of furan administration.


PPAR Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Verena Trümper ◽  
Ilka Wittig ◽  
Juliana Heidler ◽  
Florian Richter ◽  
Bernhard Brüne ◽  
...  

The peroxisome proliferator-activated receptor (PPARγ) is a central mediator of cellular lipid metabolism and immune cell responses during inflammation. This is facilitated by its role as a transcription factor as well as a DNA-independent protein interaction partner. We addressed how the cellular redox milieu in the cytosol and the nucleus of lipopolysaccharide (LPS)/interferon-γ- (IFNγ-) and interleukin-4- (IL4-) polarized macrophages (MΦ) initiates posttranslational modifications of PPARγ, that in turn alter its protein function. Using the redox-sensitive GFP2 (roGFP2), we validated oxidizing and reducing conditions following classical and alternative activation of MΦ, while the redox status of PPARγ was determined via mass spectrometry. Cysteine residues located in the zinc finger regions (amino acid fragments AA 90-115, AA 116-130, and AA 160-167) of PPARγ were highly oxidized, accompanied by phosphorylation of serine 82 in response to LPS/IFNγ, whereas IL4-stimulation provoked minor serine 82 phosphorylation and less cysteine oxidation, favoring a reductive milieu. Mutating these cysteines to alanine to mimic a redox modification decreased PPARγ-dependent reporter gene transactivation supporting a functional shift of PPARγ associated with the MΦ phenotype. These data suggest distinct mechanisms for regulating PPARγ function based on the redox state of MΦ.


2020 ◽  
Author(s):  
Bo Wei ◽  
Patrick Willems ◽  
Jingjing Huang ◽  
Caiping Tian ◽  
Jing Yang ◽  
...  

ABSTRACTIn proteins, hydrogen peroxide (H2O2) reacts with redox-sensitive cysteines to form cysteine sulfenic acid, also known as S-sulfenylation. These cysteine oxidation events can steer diverse cellular processes by altering protein interactions, trafficking, conformation, and function. Previously, we had identified S-sulfenylated proteins by using a tagged proteinaceous probe based on the yeast AP-1–like (Yap1) transcription factor that specifically reacts with sulfenic acids and traps them through a mixed disulfide bond. However, the identity of the S-sulfenylated amino acid residues remained enigmatic. Here, we present a technological advancement to identify in situ sulfenylated cysteines directly by means of the transgenic Yap1 probe. In Arabidopsis thaliana cells, after an initial affinity purification and a tryptic digestion, we further enriched the mixed disulfide-linked peptides with an antibody targeting the YAP1C-derived peptide (C598SEIWDR) that entails the redox-active cysteine. Subsequent mass spectrometry analysis with pLink 2 identified 1,745 YAP1C cross-linked peptides, indicating sulfenylated cysteines in over 1,000 proteins. Approximately 55% of these YAP1C-linked cysteines had previously been reported as redox-sensitive cysteines (S-sulfenylation, S-nitrosylation, and reversibly oxidized cysteines). The presented methodology provides a noninvasive approach to identify sulfenylated cysteines in any species that can be genetically modified.


Author(s):  
Tong Zhang ◽  
Matthew J. Gaffrey ◽  
Xiaolu Li ◽  
Wei-Jun Qian

The thiol redox proteome refers to all proteins whose cysteine thiols are subjected to various redox-dependent posttranslational modifications (PTMs) including S-glutathionylation (SSG), S-nitrosylation (SNO), S-sulfenylation (SOH), and S-sulfhydration (SSH). These modifications can impact various aspects of protein function such as activity, binding, conformation, localization, and interactions with other molecules. To identify novel redox proteins in signaling and regulation, it is highly desirable to have robust redox proteomics methods that can provide global, site-specific, and stoichiometric quantification of redox PTMs. Mass spectrometry (MS)-based redox proteomics has emerged as the primary platform for broad characterization of thiol PTMs in cells and tissues. Herein we review recent advances in MS-based redox proteomics approaches for quantitative profiling of redox PTMs at physiological or oxidative stress conditions and highlight some recent applications. Considering the relative maturity of available methods, emphasis will be on two types of modifications: 1) total oxidation (i.e., all reversible thiol modifications), the level of which represents the overall redox state, and 2) S-glutathionylation, a major form of reversible thiol oxidation. We also discuss the significance of stoichiometric measurements of thiol PTMs as well as future perspectives towards a better understanding of cellular redox regulatory networks in cells and tissues


2019 ◽  
Author(s):  
Pierre Vigié ◽  
Cécile Gonzalez ◽  
Stephen Manon ◽  
Ingrid Bhatia-Kissova ◽  
Nadine Camougrand

AbstractMitophagy, the process that degrades mitochondria selectively through autophagy, is involved in the quality control of these organelles. In yeast, the presence of the Atg32 protein on the outer mitochondrial membrane allows for the recognition and targeting of superfluous or damaged mitochondria for degradation. Some posttranslational modifications, such as phosphorylation, are crucial for the execution of the mitophagy process. In our study, we showed that in the stationary phase of growth, and to a lesser extent during starvation, the Atg32 protein level decreases. The fact that a decline in Atg32 level can be prevented by inhibition of the proteolytic activity of proteasome may indicate that Atg32 is also ubiquitylated. In fact, mass spectrometry analysis of purified Atg32 protein showed ubiquitination of lysine residue in position 282. These different patterns of posttranslational modifications of Atg32 could allow cells to control the mitophagy process carefully.


2009 ◽  
Vol 53 (11) ◽  
pp. 4647-4655 ◽  
Author(s):  
Chrystelle Derache ◽  
Valérie Labas ◽  
Vincent Aucagne ◽  
Hervé Meudal ◽  
Céline Landon ◽  
...  

ABSTRACTThree biologically active β-defensins were purified by chromatography from chicken bone marrow extract: avian β-defensin 1 (AvBD1), AvBD2, and the newly isolated β-defensin AvBD7. Mass spectrometry analyses showed that bone marrow-derived AvBD1, -2, and -7 peptides were present as mature peptides and revealed posttranslational modifications for AvBD1 and AvBD7 in comparison to their in silico-predicted amino acid sequences. Tandem mass spectrometry analysis using the nanoelectrospray-quadrupole time of flight method showed N-terminal glutaminyl cyclization of mature AvBD7 and C-terminal amidation of mature AvBD1 peptide, while posttranslational modifications were absent in bone marrow-derived mature AvBD2 peptide. Furthermore, mass spectrometry analysis performed on intact cells confirmed the presence of these three peptides in mature heterophils. In addition, the antibacterial activities of the three β-defensins against a large panel of gram-positive and -negative bacteria were assessed. While the three defensins displayed similar antibacterial spectra of activity against gram-positive strains, AvBD1 and AvBD7 exhibited the strongest activity against gram-negative strains in comparison to AvBD2.


2002 ◽  
Vol 283 (3) ◽  
pp. F540-F548 ◽  
Author(s):  
Esperanza Fernández ◽  
Montserrat Carrascal ◽  
Ferran Rousaud ◽  
Joaquín Abián ◽  
Antonio Zorzano ◽  
...  

Mutations in the rBAT and b0,+AT genes cause type I and non-type I cystinuria, respectively. The disulfide-linked rBAT-b0,+AT heterodimer mediates high-affinity transport of cystine and dibasic amino acids (b0,+-like activity) in heterologous cell systems. However, the significance of this heterodimer for cystine reabsorption is unknown, as direct evidence for such a complex in vivo is lacking and the expression patterns of rBAT and b0,+AT along the proximal tubule are opposite. We addressed this issue by biochemical means. Western blot analysis of mouse and human kidney brush-border membranes showed that rBAT and b0,+AT were solely expressed as heterodimers of identical size and that both proteins coprecipitated. Moreover, quantitative immunopurification of b0,+AT followed by SDS-PAGE and mass spectrometry analysis established that b0,+AT heterodimerizes exclusively with rBAT. Together with cystine reabsorption data, our results demonstrate that a decreasing expression gradient of heterodimeric rBAT-b0,+AT along the proximal tubule is responsible for virtually all apical cystine reabsorption. As a corollary of the above, there should be an excess of rBAT expression over that of b0,+AT protein in the kidney. Indeed, complete immunodepletion of b0,+AT did not coprecipitate >20–30% of rBAT. Therefore, another rBAT-associated subunit may be present in latter parts of the proximal tubule.


Sign in / Sign up

Export Citation Format

Share Document