Proteomic Analysis of Subchronic Furan Exposure in the Liver of Male Fischer F344 Rats

2021 ◽  
Vol 50 (1) ◽  
pp. 47-59
Author(s):  
Santokh Gill ◽  
Meghan Kavanagh ◽  
Christine Poirier ◽  
Ruixi Xie ◽  
Terry Koerner

Furan is a volatile compound formed during the thermal processing of foods. Chronic exposure has been shown to cause cholangiocarcinoma and hepatocellular tumors in rodent models. We conducted a 90 day subchronic study in Fisher 344 rats exposed to various doses by gavage to determine the NOAEL. Previous reports have outlined changes in the liver using gross necropsy examination, histopathology, clinical biochemistry, hematology, immunohistochemistry, and toxicogenomics. The data revealed that males were more sensitive than females. The focus of this study was to evaluate the toxicoproteomic changes by 2-dimensional differential in gel electrophoresis followed by mass spectrometry analysis. To compliment previous studies, protein expression changes were evaluated of male animals after 90 days of exposure to doses of 0, 0.03, 0.5, and 8.0 mg/kg bw/d. Significant statistical treatment-related changes compared to the controls identified 45 protein spots containing 38 unique proteins. Proteins identified are implicated in metabolism, redox regulation, protein folding/proteolysis as well as structural and transport proteins. At lower doses, multiple cytoprotective pathways are activated to maintain a homeostasis but ultimately the loss of protein function and impairment of several pathways could lead to adverse health effects at higher doses of furan administration.

2021 ◽  
Vol 14 (680) ◽  
pp. eaaw4673
Author(s):  
Natalia Zamorano Cuervo ◽  
Audray Fortin ◽  
Elise Caron ◽  
Stéfany Chartier ◽  
Nathalie Grandvaux

Protein function is regulated by posttranslational modifications (PTMs), among which reversible oxidation of cysteine residues has emerged as a key regulatory mechanism of cellular responses. Given the redox regulation of virus-host interactions, the identification of oxidized cysteine sites in cells is essential to understand the underlying mechanisms involved. Here, we present a proteome-wide identification of reversibly oxidized cysteine sites in oxidant-treated cells using a maleimide-based bioswitch method coupled to mass spectrometry analysis. We identified 2720 unique oxidized cysteine sites within 1473 proteins with distinct abundances, locations, and functions. Oxidized cysteine sites were found in numerous signaling pathways, many relevant to virus-host interactions. We focused on the oxidation of STING, the central adaptor of the innate immune type I interferon pathway, which is stimulated in response to the detection of cytosolic DNA by cGAS. We demonstrated the reversible oxidation of Cys148 and Cys206 of STING in cells. Molecular analyses led us to establish a model in which Cys148 oxidation is constitutive, whereas Cys206 oxidation is inducible by oxidative stress or by the natural ligand of STING, 2′3′-cGAMP. Our data suggest that the oxidation of Cys206 prevented hyperactivation of STING by causing a conformational change associated with the formation of inactive polymers containing intermolecular disulfide bonds. This finding should aid the design of therapies targeting STING that are relevant to autoinflammatory disorders, immunotherapies, and vaccines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Victoria Palin ◽  
Matthew Russell ◽  
Robert Graham ◽  
John D. Aplin ◽  
Melissa Westwood

AbstractWomen with pre-existing diabetes have an increased risk of poor pregnancy outcomes, including disordered fetal growth, caused by changes to placental function. Here we investigate the possibility that the hexosamine biosynthetic pathway, which utilises cellular nutrients to regulate protein function via post-translationally modification with O-linked N-acetylglucosamine (GlcNAc), mediates the placental response to the maternal metabolic milieu. Mass spectrometry analysis revealed that the placental O-GlcNAcome is altered in women with type 1 (n = 6) or type 2 (n = 6) diabetes T2D (≥ twofold change in abundance in 162 and 165 GlcNAcylated proteins respectively compared to BMI-matched controls n = 11). Ingenuity pathway analysis indicated changes to clathrin-mediated endocytosis (CME) and CME-associated proteins, clathrin, Transferrin (TF), TF receptor and multiple Rabs, were identified as O-GlcNAcylation targets. Stimulating protein O-GlcNAcylation using glucosamine (2.5 mM) increased the rate of TF endocytosis by human placental cells (p = 0.02) and explants (p = 0.04). Differential GlcNAcylation of CME proteins suggests altered transfer of cargo by placentas of women with pre-gestational diabetes, which may contribute to alterations in fetal growth. The human placental O-GlcNAcome provides a resource to aid further investigation of molecular mechanisms governing placental nutrient sensing.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tania Fiaschi ◽  
Giacomo Cozzi ◽  
Paola Chiarugi

On the basis of our findings reporting that cell adhesion induces the generation of reactive oxygen species (ROS) after integrin engagement, we were interested in identifying redox-regulated proteins during this process. Mass spectrometry analysis led us to identify nonmuscle myosin heavy chain (nmMHC) as a target of ROS. Our results show that, while nmMHC is reduced in detached/rounded cells, it turns towards an oxidized state in adherent/spread cells due to the integrin-engaged ROS machinery. The functional role of nmMHC redox regulation is suggested by the redox sensitivity of its association with actin, suggesting a role of nmMHC oxidation in cytoskeleton movement. Analysis of muscle MHC (mMHC) redox state during muscle differentiation, a process linked to a great and stable decrease of ROS content, shows that the protein does not undergo a redox control. Hence, we propose that the redox regulation of MHC in nonprofessional muscle cells is mandatory for actin binding during dynamic cytoskeleton rearrangement, but it is dispensable for static and highly organized cytoskeletal contractile architecture in differentiating myotubes.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1497
Author(s):  
Francesco Corrias ◽  
Alessandro Atzei ◽  
Carla Lai ◽  
Fabrizio Dedola ◽  
Enrico Ibba ◽  
...  

Pesticides are broadly used to improve food safety, although they can lead to adverse health effects on consumers. Various food processing approaches, at the industrial or domestic level, have been found to highly reduce the amount of pesticide residues in most food materials. In this work, samples of raw tomatoes were collected directly from the field and processed at the industrial level to produce purée, triple concentrated paste, fine pulp, and diced tomatoes. A multiresidue method based on a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged e Safe) sample preparation, followed by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) for the assessment of 116 pesticides residues, was used. The analytical method has been validated according to SANTE indications. The recovery yields ranged from 75.5% to 115.3%, repeatability (RSDr) ranged from 3.4% to 18.3%, while reproducibility (RSDwR) ranged from 5.4% to 19.8%. The limit of quantifications (LOQs) ranged from 2.35 µg kg−1 for benthiavalicarb to 6.49 µg kg−1 for allethrin. A total of 159 raw tomato samples were collected from the field. The analysis showed the presence of 46 pesticides with azoxystrobin and chlorantraniliprole the most represented. On the other hand, all industrially processed samples showed values ≤ LOD, confirming that post-harvest processes can lead to a decrease in pesticide residues from agricultural commodities.


1991 ◽  
Vol 26 (1) ◽  
pp. 1-16 ◽  
Author(s):  
T.P. Murphy ◽  
H. Brouwer ◽  
M.E. Fox ◽  
E. Nagy

Abstract Eighty-one sediment cores were collected to determine the extent of coal tar contamination in a toxic area of Hamilton Harbour. Over 800 samples were analyzed by a UV spectrophotometric technique that was standardized with gas chromatography/mass spectrometry analysis. The coal tar distribution was variable. The highest concentrations were near the Stelco outfalls and the Hamilton-Wentworth combined sewer outfalls. The total concentration of the 16 polynuclear aromatic hydrocarbons (PAHs) in 48,300 m3 of near-surface sediments exceeded 200 µg/g.


Sign in / Sign up

Export Citation Format

Share Document