Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs

2019 ◽  
Vol 11 (477) ◽  
pp. eaat9143 ◽  
Author(s):  
Susannah L. Hewitt ◽  
Ailin Bai ◽  
Dyane Bailey ◽  
Kana Ichikawa ◽  
John Zielinski ◽  
...  

Many solid cancers contain dysfunctional immune microenvironments. Immune system modulators that initiate responses to foreign pathogens could be promising candidates for reigniting productive responses toward tumors. Interleukin-1 (IL-1) and IL-12 cytokine family members cooperate at barrier tissues after microbial invasion, in human inflammatory diseases, and in antitumoral immunity. IL-36γ, in classic alarmin fashion, acts in damaged tissues, whereas IL-23 centrally coordinates immune responses to danger signals. In this study, direct intratumoral delivery of messenger RNAs (mRNAs) encoding these cytokines produced robust anticancer responses in a broad range of tumor microenvironments. The addition of mRNA encoding the T cell costimulator OX40L increased complete response rates in treated and untreated distal tumors compared to the cytokine mRNAs alone. Mice exhibiting complete responses were subsequently protected from tumor rechallenge. Treatments with these mRNA mixtures induced downstream cytokine and chemokine expression, and also activated multiple dendritic cell (DC) and T cell types. Consistent with this, efficacy was dependent on Batf3-dependent cross-presenting DCs and cytotoxic CD8+T cells. IL-23/IL-36γ/OX40L triplet mRNA mixture triggered substantial immune cell recruitment into tumors, enabling effective tumor destruction irrespective of previous tumoral immune infiltrates. Last, combining triplet mRNA with checkpoint blockade led to efficacy in models otherwise resistant to systemic immune checkpoint inhibition. Human cell studies showed similar cytokine responses to the individual components of this mRNA mixture, suggesting translatability of immunomodulatory activity to human patients.

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 99 ◽  
Author(s):  
Arif Jan ◽  
Safikur Rahman ◽  
Shahanavaj Khan ◽  
Sheikh Tasduq ◽  
Inho Choi

Exosomes are membrane-enclosed entities of endocytic origin, which are generated during the fusion of multivesicular bodies (MVBs) and plasma membranes. Exosomes are released into the extracellular milieu or body fluids; this process was reported for mesenchymal, epithelial, endothelial, and different immune cells (B-cells and dendritic cells), and was reported to be correlated with normal physiological processes. The compositions and abundances of exosomes depend on their tissue origins and cell types. Exosomes range in size between 30 and 100 nm, and shuttle nucleic acids (DNA, messenger RNAs (mRNAs), microRNAs), proteins, and lipids between donor and target cells. Pathogenic microorganisms also secrete exosomes that modulate the host immune system and influence the fate of infections. Such immune-modulatory effect of exosomes can serve as a diagnostic biomarker of disease. On the other hand, the antigen-presenting and immune-stimulatory properties of exosomes enable them to trigger anti-tumor responses, and exosome release from cancerous cells suggests they contribute to the recruitment and reconstitution of components of tumor microenvironments. Furthermore, their modulation of physiological and pathological processes suggests they contribute to the developmental program, infections, and human diseases. Despite significant advances, our understanding of exosomes is far from complete, particularly regarding our understanding of the molecular mechanisms that subserve exosome formation, cargo packaging, and exosome release in different cellular backgrounds. The present study presents diverse biological aspects of exosomes, and highlights their diagnostic and therapeutic potentials.


2021 ◽  
Vol 22 (15) ◽  
pp. 8340
Author(s):  
Emma Probst Brandum ◽  
Astrid Sissel Jørgensen ◽  
Mette Marie Rosenkilde ◽  
Gertrud Malene Hjortø

Chemotactic cytokines—chemokines—control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body’s defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC–T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i28-i28
Author(s):  
Iker Ausejo-Mauleon ◽  
Sara Labiano ◽  
Virginia Laspidea ◽  
Marc Garcia-Moure ◽  
Daniel de la Nava ◽  
...  

Abstract Diffuse Midline Gliomas (DMGs), encompassing Diffuse Intrinsic Pontine Gliomas (DIPGs), are the most aggressive pediatric brain tumors. Their meagre survival has not changed despite the combination of radiotherapy with targeted therapies emphasizing the urgent need for effective treatments. Recent research suggested that the DIPG tumor microenvironment is neither highly immunosuppressive nor inflammatory. These analyses showed the lack of infiltrating lymphocytes and the abundance of CD11b+ cells. TIM-3 (HAVCR2) is a member of the T-cell immunoglobulin and mucin domain protein family which is expressed on multiple immune cell types including T cells, Tregs, NK cells, monocytes, dendritic cells and microglia, where it potently regulates not only adaptive immunity but also innate immunity. Therefore, the central hypothesis of this study is that TIM-3 inhibitors could stimulate a cytotoxic immune effect and challenge several components in the tumor microenvironment including microglia, thereby providing a potential effective treatment for DMGs. In silico assessment of TIM-3 expression in a DIPG datasets showed a robust expression of this gene. Moreover, single-cell sequencing analyses of DIPG biopsies uncover its expression on tumor cells, especially in the OPCs compartment. In vivo efficacy studies showed that treatment with anti-TIM-3 antibody significantly increase the overall survival in two DIPG immunocompetent orthotopic animal models (doubling the median), lead to long-term survivors (50%) and showed immune memory. Analyses of CD45+ populations in the tumor microenvironment showed a significant increase in B, NK and CD8+ cells corresponding with a T-cell activate phenotype in treated-mice. The potential therapeutic involvement of NK cells was certified using nude mice and functional studies. Involvement of microglia in currently being analysed. In summary, these data underscore TIM-3 as a potential target DIPGs and uncover the potential involvement of NKs and other immune mechanisms in the efficacy of anti-TIM-3 therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bjoern Traenkle ◽  
Philipp D. Kaiser ◽  
Stefania Pezzana ◽  
Jennifer Richardson ◽  
Marius Gramlich ◽  
...  

The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4+ cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4+ cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64Cu-radiolabeled CD4-Nb1 in CD4+ T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 509-509
Author(s):  
Clinton Yam ◽  
Gheath Alatrash ◽  
Er-Yen Yen ◽  
Haven Garber ◽  
Anne V. Philips ◽  
...  

509 Background: In TNBC patients (pts) receiving NAST, increasing tumor infiltrating lymphocytes (TILs) is associated with higher pathologic complete response (pCR) rates. However, since the presence of TIL do not consistently predict pCR, the current study was undertaken to more fully characterize the immune cell response and its association with pCR. Methods: T cell receptor (TCR) sequencing, PD-L1 immunohistochemistry and multiplex immunofluorescence were performed on prospectively collected pre-NAST tumor samples from 98 pts with stage I-III TNBC enrolled in ARTEMIS (NCT: 02276443). TCR clonality was calculated using Shannon’s entropy. PD-L1+ was defined as ≥1% immune cell staining. Response to NAST was defined using the residual cancer burden (RCB) index. Associations between TCR clonality, immune phenotype, and response were examined with the Wilcoxon rank sum test, Spearman’s rank correlation and multivariable logistic regression using stepwise elimination (threshold p > 0.2), as appropriate. Results: The pCR rate was 39% (38/98). pCR was associated with higher TCR clonality (median = 0.2 [in pts with pCR] vs 0.1 [in pts with residual disease], p = 0.05). Notably, the association between pCR and higher TCR clonality was observed in pts with ≥5% TIL (n = 61; p = 0.05) but not in pts with < 5% TIL (n = 37; p = 0.87). Among pts with ≥5% TIL, TCR clonality emerged as the only independent predictor of response in a multivariable model of tumor immune characteristics (odds ratio/0.1 increase in TCR clonality: 3.0, p = 0.021). PD-L1+ status was associated with higher TCR clonality (median = 0.2 [in PD-L1+] vs 0.1 [in PD-L1-], p = 0.004). Higher TCR clonality was associated with higher CD3+ (rho = 0.32, p = 0.0018) and CD3+CD8+ (rho = 0.33, p = 0.0013) infiltration but lower expression of PD-1 on CD3+ (rho = -0.24, p = 0.021) and CD3+CD8+ cells (rho = -0.21, p = 0.037). Conclusions: In TNBC, a more clonal T cell population is associated with an immunologically active microenvironment (higher CD3+ and CD3/8+ T cell; lower PD-1+CD3+ and PD-1+CD3/8+ T cell; PD-L1+) and favorable response to NAST, especially in pts with ≥5% TIL, suggesting a role for deep immune phenotyping in further refining the predictive value of TILs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexander F. Haddad ◽  
Jia-Shu Chen ◽  
Taemin Oh ◽  
Matheus P. Pereira ◽  
Rushikesh S. Joshi ◽  
...  

Abstract Cytolytic score (CYT), calculated from mRNA expression levels of granzyme and perforin, positively correlates with CD8+ T cell infiltration/activity in a variety of cancers. Unlike other cancers, higher CYT has been associated with worse prognosis in glioblastoma (GBM). To address this discrepancy, we sought to investigate the relationship between CYT and immune checkpoint gene score (ICGscore), as well as their correlation with patient survival and tumor immune cell infiltration. Clinical and RNA-sequencing data for patients with newly diagnosed GBM were obtained from The Cancer Genome Atlas. Maximally-selected rank statistics was used to dichotomize subgroups. CIBERSORT was used to estimate abudence of immune cell-types. Spearman correlation was used to characterize the relationship between CYT and ICGscore. Kaplan–Meier curves were generated for survival analysis. Overall, 28/151 patients had high CYT. High CYT was associated with a mesenchymal subtype (p < 0.001) and worse survival (7.45 vs. 12.2 months, p < 0.001). There were no differences in patient demographics, IDH/MGMT mutation status, or treatment. On subgroup analysis, patients with high CYT/ICGscore had significantly increased CD8+ infiltration (p < 0.001), as expected, and worse survival (HR 0.445, p < 0.01). Furthermore, CYT strongly correlated with ICGscore (RS = 0.675, p < 0.001). The high CYT/ICGscore subgroup was associated with greater infiltration of M2 macrophages (p = 0.011) and neutrophils (p = 0.055). Our study highlights a multidimensional immunosuppressive GBM microenvironment in patients with higher CYT and potentially identifies patients with high CYT/ICGscore as a subgroup that may particularly benefit from multi-faceted immunotherapies, given their already elevated tumor CD8+ T cell levels.


Author(s):  
Fukun Guo

Abstract Many inflammatory diseases are not curable, necessitating a better understanding of their pathobiology that may help identify novel biological targets. RhoA and Cdc42 of Rho family small GTPases regulate a variety of cellular functions such as actin cytoskeletal organization, cell adhesion, migration, proliferation, and survival. Recent characterization of mouse models of conditional gene knockout of RhoA and Cdc42 has revealed their physiological and cell type-specific roles in a number of cell types. In T lymphocytes, which play an important role in the pathogenesis of most, if not all, of the inflammatory diseases, we and others have investigated the effects of T cell-specific knockout of RhoA and Cdc42 on T cell development in the thymus, peripheral T cell homeostasis, activation, and differentiation to effector and regulatory T cells, and on T cell-mediated allergic airway inflammation and colitis. Here we highlight the phenotypes resulting from RhoA and Cdc42 deletion in T cells and discuss whether pharmacological targeting of RhoA and Cdc42 is feasible in treating asthma that is driven by allergic airway inflammation and colitis.


2021 ◽  
Author(s):  
Jacqueline M. Ratter-Rieck ◽  
Haifa Maalmi ◽  
Sandra Trenkamp ◽  
Oana-Patricia Zaharia ◽  
Wolfgang Rathmann ◽  
...  

Frequencies of circulating immune cells are altered in type 1 and type 2 diabetes compared with healthy individuals and associate with insulin sensitivity, glycemic control and lipid levels. This study aimed to determine whether specific immune cell types are associated with novel diabetes subgroups. We analyzed automated white blood cell counts (n=669) and flow cytometry data (n=201) of participants of the German Diabetes Study with recent-onset (<1 year) diabetes, who were allocated to five subgroups based on data-driven analysis of clinical variables. Leukocyte numbers were highest in severe insulin-resistant diabetes (SIRD) and moderate obesity-related diabetes (MOD) and lowest in severe autoimmune diabetes (SAID). CD4<sup>+</sup> T cell frequencies were higher in SIRD vs. SAID, MOD and mild age-related diabetes (MARD), and frequencies of CCR4<sup>+</sup> regulatory T cells were higher in SIRD vs. SAID and MOD and MARD vs. SAID. Pairwise differences between subgroups were partially explained by differences in clustering variables. Frequencies of CD4<sup>+</sup> T cells were positively associated with age, BMI, HOMA2-B and HOMA2-IR, and frequencies of CCR4<sup>+</sup> regulatory T cells with age, HOMA2-B and HOMA2-IR. In conclusion, different leukocyte profiles exist between novel diabetes subgroups and suggest distinct inflammatory processes in these diabetes subgroups.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caleb R. Stoltzfus ◽  
Ramya Sivakumar ◽  
Leo Kunz ◽  
Brandy E. Olin Pope ◽  
Elena Menietti ◽  
...  

Tumors are populated by a multitude of immune cell types with varied phenotypic and functional properties, which can either promote or inhibit anti-tumor responses. Appropriate localization and function of these cells within tumors is critical for protective immunity, with CD8 T cell infiltration being a biomarker of disease outcome and therapeutic efficacy. Recent multiplexed imaging approaches have revealed highly complex patterns of localization for these immune cell subsets and the generation of distinct tumor microenvironments (TMEs), which can vary among cancer types, individuals, and within individual tumors. While it is recognized that TMEs play a pivotal role in disease progression, a better understanding of their composition, organization, and heterogeneity, as well as how distinct TMEs are reshaped with immunotherapy, is necessary. Here, we performed spatial analysis using multi-parameter confocal imaging, histocytometry, and CytoMAP to study the microanatomical organization of immune cells in two widely used preclinical cancer models, the MC38 colorectal and KPC pancreatic murine tumors engineered to express human carcinoembryonic antigen (CEA). Immune responses were examined in either unperturbed tumors or after immunotherapy with a CEA T cell bispecific (CEA-TCB) surrogate antibody and anti-PD-L1 treatment. CEA-TCB mono and combination immunotherapy markedly enhanced intra-tumoral cellularity of CD8 T cells, dominantly driven by the expansion of TCF1-PD1+ effector T cells and with more minor increases in TCF1+PD1+ resource CD8 T cells. The majority of infiltrating T cells, particularly resource CD8 T cells, were colocalized with dendritic cells (DCs) or activated MHCII+ macrophages, but largely avoided the deeper tumor nest regions composed of cancer cells and non-activated macrophages. These myeloid cell – T cell aggregates were found in close proximity to tumor blood vessels, generating perivascular immune niches. This perivascular TME was present in untreated samples and markedly increased after CEA-TCB therapy, with its relative abundance positively associated with response to therapy. Together, these studies demonstrate the utility of advanced spatial analysis in cancer research by revealing that blood vessels are key organizational hubs of innate and adaptive immune cells within tumors, and suggesting the likely relevance of the perivascular immune TME in disease outcome.


Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 945-951 ◽  
Author(s):  
CM Niemeyer ◽  
CA Sieff ◽  
B Mathey-Prevot ◽  
JZ Wimperis ◽  
BE Bierer ◽  
...  

While the cellular sources for granulocyte-macrophage colony- stimulating factor (GM-CSF) are known to be widely distributed among several cell types, interleukin-3 (IL-3) gene expression has been demonstrated in only certain T-cell clones and in blood mononuclear cells stimulated with phytohemagglutinin (PHA) and phorbol-myristate- acetate (PMA). To determine which blood cells were responsible for this expression, we fractionated PHA/PMA-stimulated mononuclear cells and identified T lymphocytes as the source of IL-3 mRNA. Low-level IL-3 expression was detected as well in several stimulated human T-cell lines. Hematopoietic stromal cells such as fibroblasts and endothelial cells could not be induced to express IL-3 mRNA. The kinetics of IL-3 mRNA induction in mononuclear cells and lymphocytes stimulated with PHA/PMA or anti-CD3 monoclonal antibody (MoAb) and interleukin-1 (IL-1) were similar to those observed for GM-CSF expression.


Sign in / Sign up

Export Citation Format

Share Document