scholarly journals De NovoCharacterization of Genes That Contribute to High-Level Ciprofloxacin Resistance in Escherichia coli

2016 ◽  
Vol 60 (10) ◽  
pp. 6353-6355 ◽  
Author(s):  
Thu Tran ◽  
Qinghong Ran ◽  
Lev Ostrer ◽  
Arkady Khodursky

ABSTRACTSensitization of resistant bacteria to existing antibiotics depends on the identification of candidate targets whose activities contribute to resistance. Using a transposon insertion library in anEscherichia colimutant that was 2,000 times less susceptible to ciprofloxacin than its parent and the relative fitness scores, we identified 19 genes that contributed to the acquired ciprofloxacin resistance and mapped the shortest genetic path that increased the antibiotic susceptibility of the resistant bacteria back to a near wild-type level.

2021 ◽  
Vol 65 (5) ◽  
Author(s):  
Dmitrii I. Shiriaev ◽  
Alina A. Sofronova ◽  
Ekaterina A. Berdnikovich ◽  
Dmitrii A. Lukianov ◽  
Ekaterina S. Komarova ◽  
...  

ABSTRACT Bacterial type II topoisomerases, DNA gyrase and topoisomerase IV, are targets of many antibiotics, including fluoroquinolones (FQs). Unfortunately, a number of bacterial species easily acquire resistance to FQs by mutations in either DNA gyrase or topoisomerase IV genes. The emergence of resistant pathogenic strains is a global problem in health care; therefore, identifying alternative pathways to thwart their persistence is the current frontier in drug discovery. Nybomycins are an attractive class of compounds, reported to be “reverse antibiotics” that selectively inhibit growth of some Gram-positive FQ-resistant bacteria by targeting the mutant form of DNA gyrase while being inactive against wild-type strains with FQ-sensitive gyrases. The strong “reverse” effect was demonstrated only for a few Gram-positive organisms resistant to FQs due to the S83L/I mutation in the GyrA subunit of DNA gyrase. However, the activity of nybomycins has not been extensively explored among Gram-negative species. Here, we observed that in a ΔtolC strain of the Gram-negative Escherichia coli with enhanced permeability, wild-type gyrase and a GyrA S83L mutant, resistant to fluoroquinolones, are similarly sensitive to nybomycin.


Author(s):  
M. Sharmal Kumar ◽  
Arunagirinathan N. ◽  
Ravikumar M.

The aim of this study was to analyze the extended spectrum β-lactamases (ESBLs) production and antibiotic susceptibility profile of urinary tract infected bacterial pathogens such as Escherichia coli and Klebsiella spp. A total of 143 Gram-negative bacteria were isolated from people suffering from urinary tract infections (UTIs) were included in this study. Among them, Escherichia coli (75%) were the predominantly isolated bacterial pathogen followed by Klebsiella oxytoca (14.6%) and K. pneumoniae (10.4%). Approximately 65% (n=93) of isolates were positive for ESBL production and E.coli was found to be the highest ESBL producer (67.6%) followed by K. oxytoca (57.1%) and K. pneumoniae (53.3%). E. coli showed high level of 86.1% resistance to cefotaxime and cefuroxime and 100% sensitive to imipenem and meropenem, whereas, K. oxytoca showed high level of 90.5% resistance to cefuroxime and 100% sensitive to amikacin, imipenem and meropenem. Similarly, K. pneumoniae showed high level of 73.3% resistance to nitrofurantoin and 93.3% sensitive to imipenem. This study reveals that majority of UTIs caused bacteria are ESBL producing multidrug-resistant bacteria and showing broad spectrum antibiotic resistance profile.


2012 ◽  
Vol 56 (9) ◽  
pp. 4955-4957 ◽  
Author(s):  
Sunil D. Saroj ◽  
Katy M. Clemmer ◽  
Robert A. Bonomo ◽  
Philip N. Rather

ABSTRACTAn EZ::TN<R6Kγori/KAN-2>Tnp transposon insertion in an open reading frame of unknown function (ncr) inAcinetobacter baumanniiresulted in an 8-fold increase in ciprofloxacin resistance (Cipr). Transposon insertions in anncrmutant that reduced Ciprback to wild type mapped to three genes encoding subunits of the RecCBD exonuclease. Thencrmutation increased transcription of therecCBDgenes, and overexpression of therecCBDgenes in a wild-type background resulted in a 4-fold increase in Cipr.


2013 ◽  
Vol 57 (9) ◽  
pp. 4215-4221 ◽  
Author(s):  
Karin Meinike Jørgensen ◽  
Tina Wassermann ◽  
Peter Østrup Jensen ◽  
Wang Hengzuang ◽  
Søren Molin ◽  
...  

ABSTRACTThe dynamics of occurrence and the genetic basis of ciprofloxacin resistance were studied in a long-term evolution experiment (940 generations) in wild-type, reference strain (PAO1) and hypermutable (PAOΔmutS and PAOMY-Mgm)P. aeruginosapopulations continuously exposed to sub-MICs (1/4) of ciprofloxacin. A rapid occurrence of ciprofloxacin-resistant mutants (MIC of ≥12 μg/ml, representing 100 times the MIC of the original population) were observed in all ciprofloxacin-exposed lineages of PAOΔmutS and PAOMY-Mgm populations after 100 and 170 generations, respectively, and in one of the PAO1 lineages after 240 generations. The genetic basis of resistance was mutations ingyrA(C248T and G259T) andgyrB(C1397A). Cross-resistance to beta-lactam antibiotics was observed in the bacterial populations that evolved during exposure to sublethal concentrations of ciprofloxacin. Our study shows that mutants with high-level ciprofloxacin resistance are selected inP. aeruginosabacterial populations exposed to sub-MICs of ciprofloxacin. This can have implications for the long-term persistence of resistant bacteria and spread of antibiotic resistance by exposure of commensal bacterial flora to low antibiotic concentrations.


2020 ◽  
Vol 65 (1) ◽  
pp. e01948-20
Author(s):  
Dalin Rifat ◽  
Si-Yang Li ◽  
Thomas Ioerger ◽  
Keshav Shah ◽  
Jean-Philippe Lanoix ◽  
...  

ABSTRACTThe nitroimidazole prodrugs delamanid and pretomanid comprise one of only two new antimicrobial classes approved to treat tuberculosis (TB) in 50 years. Prior in vitro studies suggest a relatively low barrier to nitroimidazole resistance in Mycobacterium tuberculosis, but clinical evidence is limited to date. We selected pretomanid-resistant M. tuberculosis mutants in two mouse models of TB using a range of pretomanid doses. The frequency of spontaneous resistance was approximately 10−5 CFU. Whole-genome sequencing of 161 resistant isolates from 47 mice revealed 99 unique mutations, of which 91% occurred in 1 of 5 genes previously associated with nitroimidazole activation and resistance, namely, fbiC (56%), fbiA (15%), ddn (12%), fgd (4%), and fbiB (4%). Nearly all mutations were unique to a single mouse and not previously identified. The remaining 9% of resistant mutants harbored mutations in Rv2983 (fbiD), a gene not previously associated with nitroimidazole resistance but recently shown to be a guanylyltransferase necessary for cofactor F420 synthesis. Most mutants exhibited high-level resistance to pretomanid and delamanid, although Rv2983 and fbiB mutants exhibited high-level pretomanid resistance but relatively small changes in delamanid susceptibility. Complementing an Rv2983 mutant with wild-type Rv2983 restored susceptibility to pretomanid and delamanid. By quantifying intracellular F420 and its precursor Fo in overexpressing and loss-of-function mutants, we provide further evidence that Rv2983 is necessary for F420 biosynthesis. Finally, Rv2983 mutants and other F420H2-deficient mutants displayed hypersusceptibility to some antibiotics and to concentrations of malachite green found in solid media used to isolate and propagate mycobacteria from clinical samples.


2014 ◽  
Vol 81 (2) ◽  
pp. 713-725 ◽  
Author(s):  
John W. Schmidt ◽  
Getahun E. Agga ◽  
Joseph M. Bosilevac ◽  
Dayna M. Brichta-Harhay ◽  
Steven D. Shackelford ◽  
...  

ABSTRACTSpecific concerns have been raised that third-generation cephalosporin-resistant (3GCr)Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr)E. coli, 3GCrSalmonella enterica, and nalidixic acid-resistant (NALr)S. entericamay be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n= 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCrSalmonellawas detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALrS. entericawas detected on only one hide. 3GCrE. coliand COTrE. coliwere detected on 100.0% of hides during processing. Concentrations of 3GCrE. coliand COTrE. colion hides were correlated with pre-evisceration carcass contamination. 3GCrE. coliand COTrE. coliwere each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenicE. coli(ExPEC) virulence-associated markers. Only two COTrE. coliisolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


1996 ◽  
Vol 40 (10) ◽  
pp. 2380-2386 ◽  
Author(s):  
M J Everett ◽  
Y F Jin ◽  
V Ricci ◽  
L J Piddock

Twenty-eight human isolates of Escherichia coli from Argentina and Spain and eight veterinary isolates received from the Ministry of Agriculture Fisheries and Foods in the United Kingdom required 2 to > 128 micrograms of ciprofloxacin per ml for inhibition. Fragments of gyrA and parC encompassing the quinolone resistance-determining region were amplified by PCR, and the DNA sequences of the fragments were determined. All isolates contained a mutation in gyrA of a serine at position 83 (Ser83) to an Leu, and 26 isolates also contained a mutation of Asp87 to one of four amino acids: Asn (n = 14), Tyr (n = 6), Gly (n = 5), or His (n = 1). Twenty-four isolates contained a single mutation in parC, either a Ser80 to Ile (n = 17) or Arg (n = 2) or a Glu84 to Lys (n = 3). The role of a mutation in gyrB was investigated by introducing wild-type gyrB (pBP548) into all isolates; for three transformants MICs of ciprofloxacin were reduced; however, sequencing of PCR-derived fragments containing the gyrB quinolone resistance-determining region revealed no changes. The analogous region of parE was analyzed in 34 of 36 isolates by single-strand conformational polymorphism analysis and sequencing; however, no amino acid substitutions were discovered. The outer membrane protein and lipopolysaccharide profiles of all isolates were compared with those of reference strains, and the concentration of ciprofloxacin accumulated (with or without 100 microM carbony cyanide m-chlorophenylhydrazone [CCCP] was determined. Twenty-two isolates accumulated significantly lower concentrations of ciprofloxacin than the wild-type E. coli isolate; nine isolates accumulated less then half the concentration. The addition of CCCP increased the concentration of ciprofloxacin accumulated, and in all but one isolate the percent increase was greater than that in the control strains. The data indicate that high-level fluoroquinolone resistance in E. coli involves the acquisition of mutations at multiple loci.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Laura C. Ristow ◽  
Vy Tran ◽  
Kevin J. Schwartz ◽  
Lillie Pankratz ◽  
Andrew Mehle ◽  
...  

ABSTRACTTheEscherichia colihemolysin (HlyA) is a pore-forming exotoxin associated with severe complications of human urinary tract infections. HlyA is the prototype of the repeats-in-toxin (RTX) family, which includes LtxA fromAggregatibacter actinomycetemcomitans, a periodontal pathogen. The existence and requirement for a host cell receptor for these toxins are controversial. We performed an unbiased forward genetic selection in a mutant library of human monocytic cells, U-937, for host factors involved in HlyA cytotoxicity. The top candidate was the β2integrin β subunit. Δβ2cell lines are approximately 100-fold more resistant than wild-type U-937 cells to HlyA, but remain sensitive to HlyA at high concentrations. Similarly, Δβ2cells are more resistant than wild-type U-937 cells to LtxA, as Δβ2cells remain LtxA resistant even at >1,000-fold-higher concentrations of the toxin. Loss of any single β2integrin α subunit, or even all four α subunits together, does not confer resistance to HlyA. HlyA and LtxA bind to the β2subunit, but not to αL, αM, or αXin far-Western blots. Genetic complementation of Δβ2cells with either β2or β2with a cytoplasmic tail deletion restores HlyA and LtxA sensitivity, suggesting that β2integrin signaling is not required for cytotoxicity. Finally, β2mutations do not alter sensitivity to unrelated pore-forming toxins, as wild-type or Δβ2cells are equally sensitive toStaphylococcus aureusα-toxin andProteus mirabilisHpmA. Our studies show two RTX toxins use the β2integrin β subunit alone to facilitate cytotoxicity, but downstream integrin signaling is dispensable.IMPORTANCEUrinary tract infections are one of the most common bacterial infections worldwide. UropathogenicEscherichia colistrains are responsible for more than 80% of community-acquired urinary tract infections. Although we have known for nearly a century that severe infections stemming from urinary tract infections, including kidney or bloodstream infections are associated with expression of a toxin, hemolysin, from uropathogenicEscherichia coli, how hemolysin functions to enhance virulence is unknown. Our research defines the interaction of hemolysin with the β2integrin, a human white cell adhesion molecule, as a potential therapeutic target during urinary tract infections. TheE. colihemolysin is the prototype for a toxin family (RTX family) produced by a wide array of human and animal pathogens. Our work extends to the identification and characterization of the receptor for an additional member of the RTX family, suggesting that this interaction may be broadly conserved throughout the RTX toxin family.


Author(s):  
Joshua D. Brycki ◽  
Jeremy R. Chen See ◽  
Gillian R. Letson ◽  
Cade S. Emlet ◽  
Lavinia V. Unverdorben ◽  
...  

Previous research has reported effects of the microbiome on health span and life span of Caenorhabditis elegans , including interactions with evolutionarily conserved pathways in humans. We build on this literature by reporting the gene expression of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans .


2003 ◽  
Vol 71 (9) ◽  
pp. 4985-4995 ◽  
Author(s):  
Alfredo G. Torres ◽  
James B. Kaper

ABSTRACT Adherence of enterohemorrhagic Escherichia coli (EHEC) to the intestinal epithelium is essential for initiation of infection. Intimin is the only factor demonstrated to play a role in intestinal colonization by EHEC O157:H7. Other attempts to identify additional adhesion factors in vitro have been unsuccessful, suggesting that expression of these factors is under tight regulation. We sought to identify genes involved in the control of adherence of EHEC O157:H7 to cultured epithelial cells. A total of 5,000 independent transposon insertion mutants were screened for their ability to adhere to HeLa cells, and 7 mutants were isolated with a markedly enhanced adherence. The mutants adhered at levels 113 to 170% that of the wild-type strain, and analysis of the protein profiles of these mutants revealed several proteins differentially expressed under in vitro culture conditions. We determined the sequence of the differentially expressed proteins and further investigated the function of OmpA, whose expression was increased in a mutant with an insertionally inactivated tcdA gene. An isogenic ompA mutant showed reduced adherence compared to the parent strain. Disruption of the ompA gene in the tdcA mutant strain abolished the hyperadherent phenotype, and anti-OmpA serum inhibited adhesion of wild-type and tdcA mutant strains to HeLa cells. Enhanced adhesion mediated by OmpA was also observed with Caco-2 cells, and anti-OmpA serum blocked adherence to HeLa cells of other EHEC O157:H7 strains. Our results indicate that multiple elements control adherence and OmpA acts as an adhesin in EHEC O157:H7.


Sign in / Sign up

Export Citation Format

Share Document