scholarly journals Candida glabrata Med3 Plays a Role in Altering Cell Size and Budding Index To Coordinate Cell Growth

2018 ◽  
Vol 84 (15) ◽  
Author(s):  
Hui Liu ◽  
Lulin Kong ◽  
Yanli Qi ◽  
Xiulai Chen ◽  
Liming Liu

ABSTRACT Candida glabrata is a promising microorganism for the production of organic acids. Here, we report deletion and quantitative-expression approaches to elucidate the role of C. glabrata Med3AB (CgMed3AB), a subunit of the mediator transcriptional coactivator, in regulating cell growth. Deletion of CgMed3AB caused an 8.6% decrease in final biomass based on growth curve plots and 10.5% lower cell viability. Based on transcriptomics data, the reason for this growth defect was attributable to changes in expression of genes involved in pyruvate and acetyl-coenzyme A (CoA)-related metabolism in a Cgmed3abΔ strain. Furthermore, the mRNA level of acetyl-CoA synthetase was downregulated after deleting Cgmed3ab, resulting in 22.8% and 21% lower activity of acetyl-CoA synthetase and cellular acetyl-CoA, respectively. Additionally, the mRNA level of CgCln3, whose expression depends on acetyl-CoA, was 34% lower in this strain. As a consequence, the cell size and budding index in the Cgmed3abΔ strain were both reduced. Conversely, overexpression of Cgmed3ab led to 16.8% more acetyl-CoA and 120% higher CgCln3 mRNA levels, as well as 19.1% larger cell size and a 13.3% higher budding index than in wild-type cells. Taken together, these results suggest that CgMed3AB regulates cell growth in C. glabrata by coordinating homeostasis between cellular acetyl-CoA and CgCln3. IMPORTANCE This study demonstrates that CgMed3AB can regulate cell growth in C. glabrata by coordinating the homeostasis of cellular acetyl-CoA metabolism and the cell cycle cyclin CgCln3. Specifically, we report that CgMed3AB regulates the cellular acetyl-CoA level, which induces the transcription of Cgcln3, finally resulting in alterations to the cell size and budding index. In conclusion, we report that CgMed3AB functions as a wheel responsible for driving cellular acetyl-CoA metabolism, indirectly inducing the transcription of Cgcln3 and coordinating cell growth. We propose that Mediator subunits may represent a vital regulatory target modulating cell growth in C. glabrata.

2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Katsuya Fuchino ◽  
Helena Chan ◽  
Ling Chin Hwang ◽  
Per Bruheim

ABSTRACT The alphaproteobacterium Zymomonas mobilis exhibits extreme ethanologenic physiology, making this species a promising biofuel producer. Numerous studies have investigated its biology relevant to industrial applications and mostly at the population level. However, the organization of single cells in this industrially important polyploid species has been largely uncharacterized. In the present study, we characterized basic cellular behavior of Z. mobilis strain Zm6 under anaerobic conditions at the single-cell level. We observed that growing Z. mobilis cells often divided at a nonmidcell position, which contributed to variant cell size at birth. However, the cell size variance was regulated by a modulation of cell cycle span, mediated by a correlation of bacterial tubulin homologue FtsZ ring accumulation with cell growth. The Z. mobilis culture also exhibited heterogeneous cellular DNA content among individual cells, which might have been caused by asynchronous replication of chromosome that was not coordinated with cell growth. Furthermore, slightly angled divisions might have resulted in temporary curvatures of attached Z. mobilis cells. Overall, the present study uncovers a novel bacterial cell organization in Z. mobilis. IMPORTANCE With increasing environmental concerns about the use of fossil fuels, development of a sustainable biofuel production platform has been attracting significant public attention. Ethanologenic Z. mobilis species are endowed with an efficient ethanol fermentation capacity that surpasses, in several respects, that of baker’s yeast (Saccharomyces cerevisiae), the most-used microorganism for ethanol production. For development of a Z. mobilis culture-based biorefinery, an investigation of its uncharacterized cell biology is important, because bacterial cellular organization and metabolism are closely associated with each other in a single cell compartment. In addition, the current work demonstrates that the polyploid bacterium Z. mobilis exhibits a distinctive mode of bacterial cell organization, likely reflecting its unique metabolism that does not prioritize incorporation of nutrients for cell growth. Thus, another significant result of this work is to advance our general understanding in the diversity of bacterial cell architecture.


Blood ◽  
2011 ◽  
Vol 118 (25) ◽  
pp. 6649-6659 ◽  
Author(s):  
Mattias Häger ◽  
Corinna Cavan Pedersen ◽  
Maria Torp Larsen ◽  
Mette Klarskov Andersen ◽  
Christoffer Hother ◽  
...  

Abstract Smad4 is important in the TGF-β pathway and required for transcriptional activation and inhibition of cell growth after TGF-β1 stimulation. We demonstrate that miR-130a is differentially expressed during granulopoiesis and targets Smad4 mRNA. The transcript for Smad4 is present throughout neutrophil maturation, but Smad4 protein is undetectable in the most immature cells, where miR-130a is highly expressed. Two miR-130a binding sites were identified in the 3′-untranslated region of the Smad4 mRNA. Overexpression of miR-130a in HEK293, A549, and 32Dcl3 cells repressed synthesis of Smad4 protein without affecting Smad4 mRNA level. Repression of Smad4 synthesis in a granulocytic cell line by miR-130a reduced its sensitivity to TGF-β1–induced growth inhibition. This effect was reversed by inhibiting the activity of miR-130a with an antisense probe or by expressing a Smad4 mRNA lacking miR-130a binding sites. High endogenous miR-130a and Smad4 mRNA levels and low expression of Smad4 protein were found in the t(8;21)(q22;q22) acute myelogenous leukemia–derived cell line Kasumi-1. When miR-130a was inhibited by an antisense RNA, the amount of Smad4 protein increased in Kasumi-1 cells and rendered it susceptible for TGF-β1–mediated cell growth inhibition. Our data indicate that miR-130a is involved in cell cycle regulation of granulocytic cells through engagement of Smad4 in the TGF-β pathway.


2011 ◽  
Vol 11 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Samantha C. Halliwell ◽  
Matthew C. A. Smith ◽  
Philippa Muston ◽  
Sara L. Holland ◽  
Simon V. Avery

ABSTRACTWe investigated the relevance of gene expression heterogeneity to virulence properties of a major fungal pathogen,Candida glabrata. The organism's key virulence-associated factors include glycosylphosphatidylinositol-anchored adhesins, encoded subtelomerically by theEPAgene family. Individual-cell analyses of expression revealed very striking heterogeneity for Epa1, an adhesin that mediates ∼95% of adherence to epithelial cellsin vitro. The heterogeneity in Epa1 was markedly greater than that known for other yeast genes. Sorted cells expressing high or low levels of Epa1 exhibited high and low adherence to epithelial cells, indicating a link between gene expression noise and potential virulence. The phenotypes of sorted subpopulations reverted to mixed phenotypes within a few generations. Variation in single-cell Epa1 protein and mRNA levels was correlated, consistent with transcriptional regulation of heterogeneity. Sir-dependent transcriptional silencing was the primary mechanism driving heterogeneous Epa1 expression inC. glabrataBG2, but not in CBS138 (ATCC 2001). Inefficient silencing in the latter strain was not due to a difference inEPA1sequence or (sub)telomere length and was overcome by ectopicSIR3expression. Moreover, differences between strains in the silencing dependence ofEPA1expression were evident across a range of clinical isolates, with heterogeneity being the greatest in strains whereEPA1was subject to silencing. The study shows how heterogeneity can impact the virulence-related properties ofC. glabratacell populations, with potential implications for microbial pathogenesis more broadly.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Shengyue Ji ◽  
Ming Liu ◽  
Yuping Zhang ◽  
Hongfu Zhang

LEF-1/wnt10b is one of the most important signaling pathways regulating mammary gland growth and development and is also a potential target for molecular breeding. In this work, 1-deoxynojirimycin (DNJ), a natural alkaloid extracted from plant mulberry or microorganism, was found to have a positive activity in primary breast epithelial cell growth of dairy goats. The findings showed that, compared to the control, 6 μM DNJ in the DMEM/F12 medium in vitro greatly improved the density of dairy goat breast epithelial cell and significantly increased the LEF-1 mRNA level (P<0.01) and thus enhanced cell growth. In addition, DNJ displayed a similar function in alleviating the growth suppression of epithelial cell and the decrease of LEF-1 mRNA level resulting from lentiviral-mediated LEF-1 knockdown. Simultaneously, no significant change of the mRNA levels of IGF-1 and Fgf10, the other two key regulators in mammary gland growth and development, could be detected. Furthermore, the mammary duct of DNJ-fed mouse illustrated a better development accompanied with a higher LET-1 mRNA level than that of the control. In conclusion, DNJ could improve breast epithelial cell growth through upregulating LEF-1 expression, which supplied a new means in studying mammary gland growth and development.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Chengjin Wu ◽  
Jiali Zhang ◽  
Guoxing Zhu ◽  
Rui Yao ◽  
Xiulai Chen ◽  
...  

ABSTRACT Under stress conditions, Hog1 is required for cell survival through transiently phosphorylating downstream targets and reprogramming gene expression. Here, we report that Candida glabrata Hog1 (CgHog1) interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, in response to osmotic stress. Additionally, we found that deletion of CgRDS2 led to decreases in cell growth and cell survival by 23.4% and 39.6%, respectively, at 1.5 M NaCl, compared with levels of the wild-type strain. This is attributed to significant downregulation of the expression levels of glycerophospholipid metabolism genes. As a result, the content of total glycerophospholipid decreased by 30.3%. Membrane integrity also decreased 47.6% in the Cgrds2Δ strain at 1.5 M NaCl. In contrast, overexpression of CgRDS2 increased the cell growth and cell survival by 10.2% and 6.3%, respectively, owing to a significant increase in the total glycerophospholipid content and increased membrane integrity by 27.2% and 12.1%, respectively, at 1.5 M NaCl, compared with levels for the wild-type strain. However, a strain in which the CgRDS2 gene encodes the replacement of Ser64 and Thr97 residues with alanines (Cgrds22A), harboring a CgRds2 protein that was not phosphorylated by CgHog1, failed to promote glycerophospholipid metabolism and membrane integrity at 1.5 M NaCl. Thus, the above results demonstrate that CgHog1-mediated CgRds2 phosphorylation enhanced glycerophospholipid composition and membrane integrity to resist osmotic stress in C. glabrata. IMPORTANCE This study explored the role of CgHog1-mediated CgRds2 phosphorylation in response to osmotic stress in Candida glabrata. CgHog1 interacts with and phosphorylates CgRds2, a zinc cluster transcription factor, under osmotic stress. Phosphorylated CgRds2 plays an important role in increasing glycerophospholipid composition and membrane integrity, thereby enhancing cell growth and survival.


2020 ◽  
Vol 202 (16) ◽  
Author(s):  
Anthony R. Hesser ◽  
Leigh M. Matano ◽  
Christopher R. Vickery ◽  
B. McKay Wood ◽  
Ace George Santiago ◽  
...  

ABSTRACT The opportunistic pathogen Staphylococcus aureus is protected by a cell envelope that is crucial for viability. In addition to peptidoglycan, lipoteichoic acid (LTA) is an especially important component of the S. aureus cell envelope. LTA is an anionic polymer anchored to a glycolipid in the outer leaflet of the cell membrane. It was known that deleting the gene for UgtP, the enzyme that makes this glycolipid anchor, causes cell growth and division defects. In Bacillus subtilis, growth abnormalities from the loss of ugtP have been attributed to both the absence of the encoded protein and the loss of its products. Here, we show that growth defects in S. aureus ugtP deletion mutants are due to the long, abnormal LTA polymer that is produced when the glycolipid anchor is missing from the outer leaflet of the membrane. Dysregulated cell growth leads to defective cell division, and these phenotypes are corrected by mutations in the LTA polymerase gene, ltaS, that reduce polymer length. We also show that S. aureus mutants with long LTA are sensitized to cell wall hydrolases, beta-lactam antibiotics, and compounds that target other cell envelope pathways. We conclude that control of LTA polymer length is important for S. aureus physiology and promotes survival under stressful conditions, including antibiotic stress. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of community- and hospital-acquired infections and is responsible for a large fraction of deaths caused by antibiotic-resistant bacteria. S. aureus is surrounded by a complex cell envelope that protects it from antimicrobial compounds and other stresses. Here, we show that controlling the length of an essential cell envelope polymer, lipoteichoic acid, is critical for controlling S. aureus cell size and cell envelope integrity. We also show that genes involved in LTA length regulation are required for resistance to beta-lactam antibiotics in MRSA. The proteins encoded by these genes may be targets for combination therapy with an appropriate beta-lactam.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4850-4850
Author(s):  
Chun Wang ◽  
Xiaoxia Ma ◽  
Ju Wei ◽  
Youwen Qin ◽  
Shike Yan

Abstract The translocation t(9;22) can be found in 95% patients with chronic myeloid leukemia (CML). The resulting hybrid gene bcr/abl codes for a fusion protein with tyrosine kinase activity which activates signal transduction pathways, leading to uncontrolled cell growth. A promising anti-gene technology-RNA interference (RNAi) reported in recent years can disrupts the expression of the targeted cellular gene in a complicated manner in a variety of organisms and cell types. To inhibit CML bcr/abl oncogene expression with RNAi, we used chemically synthesized anti-bcr/abl small interfering RNAs( siRNAs), mismatch control siRNAs having the three point mutations to transfect the K562 cells for different time through the electroporation. EGFP plasmid was used as a positive control and the amount of fluorescently stained cells was determined by FCM. Inhibitory effects of siRNAs were demonstrated by real-time quantitative RT-PCR and Western blots. Cell proliferation was measured by means of MTT assay and apoptosis was determined by Annexin V-FITC assay. The transfection efficiency was about 70%. The synthesized siRNAs inhibited CML bcr/abl oncogene expression at both mRNA and protein levels. The anti-bcr/abl siRNAs reduced the bcr/abl mRNA level by 67%–72% without an obvious effect on abl mRNA levels. The K562 cells electroporated with anti-bcr/abl siRNAs contained less BCR/ABL protein than cells electroporated with mismatch control siRNAs or without any siRNAs. P210 was reduced to a very low level in Western blots, whereas the wild-type ABL protein was not influenced by the anti-bcr/abl siRNAs. Depletion of bcr/abl leading to increased apoptosis and reduction of cell viability. The flow cytometric analysis showed that the percentage of dead and apoptosic cells induced by anti-bcr/abl siRNAs for 24hrs and 48hrs were 42.10% and 53.33%, respectively, including 15.05% and 19.47% of the preliminary apoptosis cells, respectively. A significant induction of apoptosis was observed after transfection compared with untreated control(1.00%)and the mismatch control siRNAs (2.98%) (p<0.05). Anti-bcr/abl siRNAs inhibited cell growth of the K562 cells and the inhibitory rate was 47% and 56%, 24h and 48h after transfection respectively, whereas the mismatch control siRNAs had no such effect on K562 cells. At the cell level, inhibition of CML bcr/abl oncogene expression by chemically synthesized siRNAs provides the new method for anti-leukemia study. Therefore, siRNAs may be potent tools for gene-specific modality against CML.


2012 ◽  
Vol 78 (12) ◽  
pp. 4380-4385 ◽  
Author(s):  
Miriam Hellberg Lindqvist ◽  
Nicklas Johansson ◽  
Thomas Nilsson ◽  
Maria Rova

ABSTRACTThe ability of microorganisms to perform dissimilatory (per)chlorate reduction is, for most species, known to be oxygen sensitive. Consequently, bioremediation processes for the removal of oxochlorates will be disturbed if oxygen is present. We measured the expression of chlorite dismutase and chlorate reductase in the presence of different terminal electron acceptors in the chlorate reducerIdeonella dechloratans. Enzyme activity assays and mRNA analyses by real-time quantitative reverse transcription (qRT)-PCR were performed on cell extracts from cells grown aerobically with and without chlorate and on cells grown anaerobically in the presence of chlorate. Our results showed that both chlorite dismutase and chlorate reductase are expressed during aerobic growth. However, transfer to anaerobic conditions with chlorate resulted in significantly enhanced enzyme activities and mRNA levels for both enzymes. Absence of oxygen was necessary for the induction to occur, since chlorate addition under aerobic conditions produced neither increased enzyme activities nor higher relative levels of mRNA. For chlorite dismutase, the observed increase in activity was on the same order of magnitude as the increase in the relative mRNA level, indicating gene regulation at the transcriptional level. However, chlorate reductase showed about 200 times higher enzyme activity in anaerobically induced cells, whereas the increase in mRNA was only about 10-fold, suggesting additional mechanisms influence the enzyme activity.


2011 ◽  
Vol 55 (7) ◽  
pp. 3261-3271 ◽  
Author(s):  
Oana Dumitrescu ◽  
Priya Choudhury ◽  
Sandrine Boisset ◽  
Cédric Badiou ◽  
Michele Bes ◽  
...  

ABSTRACTPrevious articles reported that beta-lactam antibiotics increase the expression ofStaphylococcus aureusPanton-Valentine leukocidin (PVL) by activating its transcription. We investigated the mechanisms underlying the inductor effect of beta-lactams on PVL expression by determining targets and regulatory pathways possibly implicated in this process. We measured PVL production in the presence of oxacillin (nonselective), imipenem (penicillin-binding protein 1 [PBP1] selective), cefotaxime (PBP2 selective), cefaclore (PBP3 selective), and cefoxitin (PBP4 selective).In vitro, we observed increased PVL production consistent withluk-PV mRNA levels that were 20 to 25 times higher for community-acquired methicillin-resistantS. aureus(CA-MRSA) cultures treated with PBP1-binding oxacillin and imipenem than for cultures treated with other beta-lactams or no antibiotic at all. This effect was also observedin vivo, with increased PVL mRNA levels in lung tissues from CA-MRSA-infected mice treated with imipenem but not cefoxitin. To confirm the involvement of PBP1 inhibition in this pathway, PBP1 depletion by use of an induciblepbp1antisense RNA showed a dose-dependent relationship between the level ofpbp1antisense RNA and theluk-PV mRNA level. Upon imipenem treatment of exponential-phase cultures, we observed an increasedsarAmRNA level after 30 min of incubation followed by a decreasedrotmRNA level after 1 to 4 h of incubation. Unlike theagrandsaeRSpositive regulators, which were nonessential for PVL induction by beta-lactams, thesarA(positive) androt(negative) PVL regulators were necessary for PVL induction by imipenem. Our results suggest that antibiotics binding to PBP1 increase PVL expression by modulatingsarAandrot, which are essential mediators of the inductor effect of beta-lactams on PVL expression.


2013 ◽  
Vol 12 (6) ◽  
pp. 864-874 ◽  
Author(s):  
Yuichi Kimura ◽  
Kaoru Irie ◽  
Kenji Irie

ABSTRACT The Saccharomyces cerevisiae Pbp1 [poly(A)-binding protein (Pab1)-binding protein] is believed to be involved in RNA metabolism and regulation of translation, since Pbp1 regulates a length of poly(A) tail and is involved in stress granule (SG) formation. However, a physiological function of Pbp1 remains unclear, since the pbp1 Δ mutation has no obvious effect on cell growth. In this study, we showed that PBP1 genetically interacts with CCR4 and KHD1 , which encode a cytoplasmic deadenylase and an RNA-binding protein, respectively. Ccr4 and Khd1 modulate a signal from Rho1 in the cell wall integrity pathway by regulating the expression of RhoGEF and RhoGAP, and the double deletion of CCR4 and KHD1 confers a severe growth defect displaying cell lysis. We found that the pbp1 Δ mutation suppressed the growth defect caused by the ccr4Δ khd1 Δ mutation. The pbp1 Δ mutation also suppressed the growth defect caused by double deletion of POP2 , encoding another cytoplasmic deadenylase, and KHD1 . Deletion of the gene encoding previously known Pbp1-interacting factor Lsm12, Pbp4, or Mkt1 did not suppress the growth defect of the ccr4Δ khd1 Δ mutant, suggesting that Pbp1 acts independently of these factors in this process. We then screened novel Pbp1-interacting factors and found that Pbp1 interacts with ribosomal proteins Rpl12a and Rpl12b. Similarly to the pbp1 Δ mutation, the rpl12a Δ and rpl12b Δ mutations also suppressed the growth defect caused by the ccr4Δ khd1 Δ mutation. Our results suggest that Pbp1 is involved in the Ccr4- and Khd1-mediated regulation of cell growth through the association with Rpl12a and Rpl12b.


Sign in / Sign up

Export Citation Format

Share Document