scholarly journals Feed Fermentation with Reuteran- and Levan-Producing Lactobacillus reuteri Reduces Colonization of Weanling Pigs by Enterotoxigenic Escherichia coli

2015 ◽  
Vol 81 (17) ◽  
pp. 5743-5752 ◽  
Author(s):  
Yan Yang ◽  
Sandra Galle ◽  
Minh Hong Anh Le ◽  
Ruurd T. Zijlstra ◽  
Michael G. Gänzle

ABSTRACTThis study determined the effect of feed fermentation withLactobacillus reuterion growth performance and the abundance of enterotoxigenicEscherichia coli(ETEC) in weanling piglets.L. reuteristrains produce reuteran or levan, exopolysaccharides that inhibit ETEC adhesion to the mucosa, and feed fermentation was conducted under conditions supporting exopolysaccharide formation and under conditions not supporting exopolysaccharide formation. Diets were chosen to assess the impact of organic acids and the impact of viableL. reuteribacteria. Fecal samples were taken throughout 3 weeks of feeding; at the end of the 21-day feeding period, animals were euthanized to sample the gut digesta. The feed intake was reduced in pigs fed diets containing exopolysaccharides; however, feed efficiencies did not differ among the diets. Quantification ofL. reuteriby quantitative PCR (qPCR) detected the two strains used for feed fermentation throughout the intestinal tract. Quantification ofE. coliand ETEC virulence factors by qPCR demonstrated that fermented diets containing reuteran significantly (P< 0.05) reduced the copy numbers of genes forE. coliand the heat-stable enterotoxin in feces compared to those achieved with the control diet. Any fermented feed significantly (P< 0.05) reduced the abundance ofE. coliand the heat-stable enterotoxin in colonic digesta at 21 days; reuteran-containing diets reduced the copy numbers of the genes forE. coliand the heat-stable enterotoxin below the detection limit in samples from the ileum, the cecum, and the colon. In conclusion, feed fermentation withL. reuterireduced the level of colonization of weaning piglets with ETEC, and feed fermentation supplied concentrations of reuteran that may specifically contribute to the effect on ETEC.

2014 ◽  
Vol 80 (18) ◽  
pp. 5752-5760 ◽  
Author(s):  
Xiao Yan Chen ◽  
Adrienne Woodward ◽  
Ruurd T. Zijlstra ◽  
Michael G. Gänzle

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is a major cause of diarrhea in piglets; ETEC cells colonize the intestinal mucosa with adhesins and deliver toxins that cause fluid loss. This study determined the antiadhesive properties of bacterial exopolysaccharides (reuteran and levan) and related glycans (dextran and inulin) in a small intestinal segment perfusion (SISP) model. The SISP model used 10 jejunal segments from 5-week-old piglets. Five segments were infected with ETEC expressing K88 fimbriae (ETEC K88), while five segments were treated with saline. Every two segments (ETEC and non-ETEC infected) were infused with 65 ml of 10 g liter−1of glycans or saline (control) for 8 h. High-resolution melting-curve (HRM) quantitative PCR (qPCR) indicated thatE. coliis the dominant bacterium in infected segments, while other bacteria were predominant in noninfected segments. Infection by ETEC K88 was also verified by qPCR; gene copy numbers of K88 fimbriae and the heat-labile toxin (LT) in mucosal scrapings and outflow fluid of infected segments were significantly higher than those in noninfected segments. Genes coding for K88 fimbriae and LT were also detected in noninfected segments. LT amplicons from infected and noninfected segments were 99% identical over 481 bp, demonstrating the presence of autochthonous ETEC K88. All glycans reduced fluid loss caused by ETEC K88 infection. Reuteran tended (P= 0.06) to decrease ETEC K88 levels in mucosal scraping sample, as judged by qPCR. Fluorescentin situhybridization analysis demonstrated that reuteran significantly (P= 0.012) decreased levels of adherent ETEC K88. Overall, reuteran may prevent piglet diarrhea by reducing adhesion of ETEC K88.


2015 ◽  
Vol 59 (4) ◽  
pp. 1962-1968 ◽  
Author(s):  
Sun Hee Park ◽  
Su-Mi Choi ◽  
Dong-Gun Lee ◽  
Sung-Yeon Cho ◽  
Hyo-Jin Lee ◽  
...  

ABSTRACTExtended-spectrum β-lactamase-producingEscherichia coli(ESBL-EC) is increasingly identified as a cause of acute pyelonephritis (APN) among patients without recent health care contact, i.e., community-associated APN. This case-control study compared 75 cases of community-associated ESBL-EC APN (CA-ESBL) to 225 controls of community-associated non-ESBL-EC APN (CA-non-ESBL) to identify the risk factors for ESBL-EC acquisition and investigate the impact of ESBL on the treatment outcomes of community-associated APN (CA-APN) caused byE. coliat a Korean hospital during 2007 to 2013. The baseline characteristics were similar between the cases and controls; the risk factors for ESBL-EC were age (>55 years), antibiotic use within the previous year, and diabetes with recurrent APN. The severity of illness did not differ between CA-ESBL and CA-non-ESBL (Acute Physiology and Chronic Health Evaluation [APACHE] II scores [mean ± standard deviation], 7.7 ± 5.9 versus 6.4 ± 5.3;P= 0.071). The proportions of clinical (odds ratio [OR], 1.76; 95% confidence interval [CI], 0.57 to 5.38;P= 0.323) and microbiological (OR, 1.16; 95% CI, 0.51 to 2.65;P= 0.730) cures were similar, although the CA-ESBL APN patients were less likely to receive appropriate antibiotics within 48 h. A multivariable Cox proportional hazards analysis of the prognostic factors for CA-APN caused byE. colishowed that ESBL production was not a significant factor for clinical (hazard ratio [HR], 0.39; 95% CI, 0.12 to 1.30;P= 0.126) or microbiological (HR, 0.49; 95% CI, 0.21 to 1.12;P= 0.091) failure. The estimates did not change after incorporating weights calculated using propensity scores for acquiring ESBL-EC. Therefore, ESBL production did not negatively affect treatment outcomes among patients with community-associatedE. coliAPN.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2015 ◽  
Vol 81 (10) ◽  
pp. 3561-3570 ◽  
Author(s):  
Timothy J. Johnson ◽  
Randall S. Singer ◽  
Richard E. Isaacson ◽  
Jessica L. Danzeisen ◽  
Kevin Lang ◽  
...  

ABSTRACTIncA/C plasmids are broad-host-range plasmids enabling multidrug resistance that have emerged worldwide among bacterial pathogens of humans and animals. Although antibiotic usage is suspected to be a driving force in the emergence of such strains, few studies have examined the impact of different types of antibiotic administration on the selection of plasmid-containing multidrug resistant isolates. In this study, chlortetracycline treatment at different concentrations in pig feed was examined for its impact on selection and dissemination of an IncA/C plasmid introduced orally via a commensalEscherichia colihost. Continuous low-dose administration of chlortetracycline at 50 g per ton had no observable impact on the proportions of IncA/C plasmid-containingE. colifrom pig feces over the course of 35 days. In contrast, high-dose administration of chlortetracycline at 350 g per ton significantly increased IncA/C plasmid-containingE. coliin pig feces (P< 0.001) and increased movement of the IncA/C plasmid to other indigenousE. colihosts. There was no evidence of conjugal transfer of the IncA/C plasmid to bacterial species other thanE. coli.In vitrocompetition assays demonstrated that bacterial host background substantially impacted the cost of IncA/C plasmid carriage inE. coliandSalmonella.In vitrotransfer and selection experiments demonstrated that tetracycline at 32 μg/ml was necessary to enhance IncA/C plasmid conjugative transfer, while subinhibitory concentrations of tetracyclinein vitrostrongly selected for IncA/C plasmid-containingE. coli. Together, these experiments improve our knowledge on the impact of differing concentrations of tetracycline on the selection of IncA/C-type plasmids.


2012 ◽  
Vol 80 (12) ◽  
pp. 4417-4425 ◽  
Author(s):  
Xiaogang Wang ◽  
Philip R. Hardwidge

ABSTRACTThe NF-κB pathway regulates innate immune responses to infection. NF-κB is activated after pathogen-associated molecular patterns are detected, leading to the induction of proinflammatory host responses. As a countermeasure, bacterial pathogens have evolved mechanisms to subvert NF-κB signaling. EnterotoxigenicEscherichia coli(ETEC) causes diarrheal disease and significant morbidity and mortality for humans in developing nations. The extent to which this important pathogen subverts innate immune responses by directly targeting the NF-κB pathway is an understudied topic. Here we report that ETEC secretes a heat-stable, proteinaceous factor that blocks NF-κB signaling normally induced by tumor necrosis factor (TNF), interleukin-1β, and flagellin. Pretreating intestinal epithelial cells with ETEC supernatant significantly blocked the degradation of the NF-κB inhibitor IκBα without affecting IκBα phosphorylation. Data from immunoprecipitation experiments suggest that the ETEC factor functions by preventing IκBα polyubiquitination. Inhibiting clathrin function blocked the activity of the secreted ETEC factor, suggesting that this yet-uncharacterized activity may utilize clathrin-dependent endocytosis to enter host cells. These data suggest that ETEC evades the host innate immune response by directly modulating NF-κB signaling.


2015 ◽  
Vol 59 (9) ◽  
pp. 5171-5180 ◽  
Author(s):  
M. A. Fleury ◽  
G. Mourand ◽  
E. Jouy ◽  
F. Touzain ◽  
L. Le Devendec ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESCs) is an important health concern. Here, we studied the impact of the administration of a long-acting form of ceftiofur on the pig gut microbiota and ESC resistance inEscherichia coli. Pigs were orally inoculated with an ESC-resistantE. coliM63 strain harboring a conjugative plasmid carrying a gene conferring resistance,blaCTX-M-1. On the same day, they were given or not a unique injection of ceftiofur. Fecal microbiota were studied using quantitative PCR analysis of the main bacterial groups and quantification of short-chain fatty acids.E. coliand ESC-resistantE. coliwere determined by culture methods, and the ESC-resistantE. coliisolates were characterized. The copies of theblaCTX-M-1gene were quantified. After ceftiofur injection, the main change in gut microbiota was the significant but transitory decrease in theE. colipopulation. Acetate and butyrate levels were significantly lower in the treated group. In all inoculated groups,E. coliM63 persisted in most pigs, and theblaCTX-M-1gene was transferred to otherE. coli. Culture and PCR results showed that the ceftiofur-treated group shed significantly more resistant strains 1 and 3 days after ESC injection. Thereafter, on most dates, there were no differences between the groups, but notably, one pig in the nontreated group regularly excreted very high numbers of ESC-resistantE. coli, probably leading to a higher contamination level in its pen. In conclusion, the use of ESCs, and also the presence of high-shedding animals, are important features in the spread of ESC resistance.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Hélène Cazzola ◽  
Laurine Lemaire ◽  
Sébastien Acket ◽  
Elise Prost ◽  
Luminita Duma ◽  
...  

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell’s plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions. IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Giorgio Mattiuz ◽  
Sabrina Nicolò ◽  
Alberto Antonelli ◽  
Tommaso Giani ◽  
Ilaria Baccani ◽  
...  

ABSTRACT MCR-1 is a plasmid-encoded phosphoethanolamine transferase able to modify the lipid A structure. It confers resistance to colistin and was isolated from human, animal, and environmental strains of Enterobacteriaceae, raising serious global health concerns. In this paper, we used recombinant mcr-1-expressing Escherichia coli to study the impact of MCR-1 products on E. coli-induced activation of inflammatory pathways in activated THP-1 cells, which was used as a model of human macrophages. We found that infection with recombinant mcr-1-expressing E. coli significantly modulated p38-MAPK and Jun N-terminal protein kinase (JNK) activation and pNF-κB nuclear translocation as well as the expression of genes for the relevant proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and IL-1β compared with mcr-1-negative strains. Caspase-1 activity and IL-1β secretion were significantly less activated by mcr-1-positive E. coli strains than the mcr-1-negative parental strain. Similar results were obtained with clinical isolates of mcr-1-positive E. coli, suggesting that, in addition to colistin resistance, the expression of mcr-1 allows the escape of early host innate defenses and may promote bacterial survival.


2006 ◽  
Vol 69 (2) ◽  
pp. 412-416 ◽  
Author(s):  
MICHAEL A. GRANT ◽  
JINXIN HU ◽  
KAREN C. JINNEMAN

A multiplex real-time PCR method was developed for detection of heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli. Approximately 10 CFU per reaction mixture could be detected in rinsates from produce samples. Several foods representative of varieties previously shown to have caused enterotoxigenic E. coli outbreaks were spiked and enriched for 4 or 6 h. Both heat-labile and heat-stable toxin genes could be detected in the foods tested, with the exception of hot sauce, with threshold cycle values ranging from 25.2 to 41.1. A procedure using membrane filtration which would allow enumeration of the enterotoxigenic E. coli population in a food sample in less than 28 h by real-time PCR analysis of colonies picked from media highly selective for E. coli was also developed.


2014 ◽  
Vol 80 (24) ◽  
pp. 7702-7709 ◽  
Author(s):  
Jessica Eggers ◽  
Alexander Steinbüchel

ABSTRACTThe model organism for polyhydroxybutyrate (PHB) biosynthesis,Ralstonia eutrophaH16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinantEscherichia coliBL21(DE3) strains were used to study the impact of selected PHB depolymerases ofR. eutrophaH16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinantE. coliBL21(DE3) strains were constructed, which harbored a plasmid carrying thephaCABoperon fromR. eutrophaH16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase fromR. eutrophaH16. It is shown in this study that the growth behavior of the respective recombinantE. colistrains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboringphaZ7reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed ifphaZ1was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes.


Sign in / Sign up

Export Citation Format

Share Document