scholarly journals Community-Level Analysis of psbA Gene Sequences and Irgarol Tolerance in Marine Periphyton

2008 ◽  
Vol 75 (4) ◽  
pp. 897-906 ◽  
Author(s):  
K. M. Eriksson ◽  
A. K. Clarke ◽  
L.-G. Franzen ◽  
M. Kuylenstierna ◽  
K. Martinez ◽  
...  

ABSTRACT This study analyzes psbA gene sequences, predicted D1 protein sequences, species relative abundance, and pollution-induced community tolerance in marine periphyton communities exposed to the antifouling compound Irgarol 1051. The mechanism of action of Irgarol is the inhibition of photosynthetic electron transport at photosystem II by binding to the D1 protein. The metagenome of the communities was used to produce clone libraries containing fragments of the psbA gene encoding the D1 protein. Community tolerance was quantified with a short-term test for the inhibition of photosynthesis. The communities were established in a continuous flow of natural seawater through microcosms with or without added Irgarol. The selection pressure from Irgarol resulted in an altered species composition and an inducted community tolerance to Irgarol. Moreover, there was a very high diversity in the psbA gene sequences in the periphyton, and the composition of psbA and D1 fragments within the communities was dramatically altered by increased Irgarol exposure. Even though tolerance to this type of compound in land plants often depends on a single amino acid substitution (Ser264→Gly) in the D1 protein, this was not the case for marine periphyton species. Instead, the tolerance mechanism likely involves increased degradation of D1. When we compared sequences from low and high Irgarol exposure, differences in nonconserved amino acids were found only in the so-called PEST region of D1, which is involved in regulating its degradation. Our results suggest that environmental contamination with Irgarol has led to selection for high-turnover D1 proteins in marine periphyton communities at the west coast of Sweden.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 289
Author(s):  
Kathleen K. M. Glover ◽  
Danica M. Sutherland ◽  
Terence S. Dermody ◽  
Kevin M. Coombs

Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.


2012 ◽  
Vol 58 (5) ◽  
pp. 589-595
Author(s):  
Guy Lemay ◽  
Martin Bisaillon

Many temperature-sensitive mutants have been isolated in early studies of mammalian reovirus. However, the biological properties and nature of the genetic alterations remain incompletely explored for most of these mutants. The mutation harbored by the tsI138 mutant was already assigned to the L3 gene encoding the λ1 protein. In the present study, this mutant was further studied as a possible tool to establish the role of the putative λ1 enzymatic activities in viral multiplication. It was observed that synthesis of viral proteins is only marginally reduced, while it was difficult to recover viral particles at the nonpermissive temperature. A single nucleotide substitution resulting in an amino acid change was found; the position of this amino acid is consistent with a probable defect in assembly of the inner capsid at the nonpermissive temperature.


2007 ◽  
Vol 92 (3) ◽  
pp. 315-325 ◽  
Author(s):  
Madhavi Kommalapati ◽  
Hong Jin Hwang ◽  
Hong-Liang Wang ◽  
Robert L. Burnap

Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 6-11 ◽  
Author(s):  
Mélanie Dumont ◽  
Jocelyne Letarte ◽  
François J. Tardif

A Powell amaranth population suspected to be resistant (R) to linuron was discovered in a carrot field in Keswick, Ontario, Canada, in 1999. Dose–response analysis with different herbicides and DNA sequencing of thepsbAgene encoding the D1 protein of photosystem II were done to confirm the resistance and identify its basis. A calculated resistance factor indicated a 12-fold increased resistance when linuron was applied to an R population compared with a susceptible (S) population. Moreover, the R population showed 6.4- and 3.1-fold greater resistance to two other phenylurea herbicides (diuron and monolinuron), 1.8- and 1.4-fold greater resistance to two triazine herbicides (metribuzin and prometryn), and 2.6-fold greater resistance to the triazinone metribuzin. R population was also cross-resistant to bentazon and bromoxynil when compared with S population, with a calculated resistance factor of 1.4 and 2.2, respectively. The partial nucleotide sequence of thepsbAgene of R populations differed at two locations when compared with S populations. The first mutation coded for a Val219Ile substitution in the deduced amino acid sequence of the D1 protein, and the second mutation was silent and encoded for a proline at position 279 in both R and S populations. The Val219Ile substitution in thepsbAgene is most likely the cause of this Powell amaranth population resistance to linuron and other PSII inhibitors. This is the first recorded instance of a Val219Ile substitution in anAmaranthusspecies.


2005 ◽  
Vol 187 (9) ◽  
pp. 3188-3200 ◽  
Author(s):  
Nicholas H. Mann ◽  
Martha R. J. Clokie ◽  
Andrew Millard ◽  
Annabel Cook ◽  
William H. Wilson ◽  
...  

ABSTRACT Bacteriophage S-PM2 infects several strains of the abundant and ecologically important marine cyanobacterium Synechococcus. A large lytic phage with an isometric icosahedral head, S-PM2 has a contractile tail and by this criterion is classified as a myovirus (1). The linear, circularly permuted, 196,280-bp double-stranded DNA genome of S-PM2 contains 37.8% G+C residues. It encodes 239 open reading frames (ORFs) and 25 tRNAs. Of these ORFs, 19 appear to encode proteins associated with the cell envelope, including a putative S-layer-associated protein. Twenty additional S-PM2 ORFs have homologues in the genomes of their cyanobacterial hosts. There is a group I self-splicing intron within the gene encoding the D1 protein. A total of 40 ORFs, organized into discrete clusters, encode homologues of T4 proteins involved in virion morphogenesis, nucleotide metabolism, gene regulation, and DNA replication and repair. The S-PM2 genome encodes a few surprisingly large (e.g., 3,779 amino acids) ORFs of unknown function. Our analysis of the S-PM2 genome suggests that many of the unknown S-PM2 functions may be involved in the adaptation of the metabolism of the host cell to the requirements of phage infection. This hypothesis originates from the identification of multiple phage-mediated modifications of the host's photosynthetic apparatus that appear to be essential for maintaining energy production during the lytic cycle.


2010 ◽  
Vol 76 (17) ◽  
pp. 6001-6005 ◽  
Author(s):  
Yong-Sheng Tian ◽  
Ai-Sheng Xiong ◽  
Jing Xu ◽  
Wei Zhao ◽  
Feng Gao ◽  
...  

ABSTRACT Applying the genomic library construction process and colony screening, a novel aro A gene encoding 5-enopyruvylshikimate-3-phosphate synthase from Ochrobactrum anthropi was identified, cloned, and overexpressed, and the enzyme was purified to homogeneity. Furthermore, site-directed mutagenesis was employed to assess the role of single amino acid residues in glyphosate resistance.


1990 ◽  
Vol 10 (12) ◽  
pp. 6123-6131 ◽  
Author(s):  
J Archambault ◽  
K T Schappert ◽  
J D Friesen

RNA polymerase II (RNAPII) is a complex multisubunit enzyme responsible for the synthesis of pre-mRNA in eucaryotes. The enzyme is made of two large subunits associated with at least eight smaller polypeptides, some of which are common to all three RNA polymerase species. We have initiated a genetic analysis of RNAPII by introducing mutations in RPO21, the gene encoding the largest subunit of RNAPII in Saccharomyces cerevisiae. We have used a yeast genomic library to isolate plasmids that can suppress a temperature-sensitive mutation in RPO21 (rpo21-4), with the goal of identifying gene products that interact with the largest subunit of RNAPII. We found that increased expression of wild-type RPO26, a single-copy, essential gene encoding a 155-amino-acid subunit common to RNAPI, RNAPII, and RNAPIII, suppressed the rpo21-4 temperature-sensitive mutation. Mutations were constructed in vitro that resulted in single amino acid changes in the carboxy-terminal portion of the RPO26 gene product. One temperature-sensitive mutation, as well as some mutations that did not by themselves generate a phenotype, were lethal in combination with rpo21-4. These results support the idea that the RPO26 and RPO21 gene products interact.


Genetics ◽  
1989 ◽  
Vol 123 (3) ◽  
pp. 431-440 ◽  
Author(s):  
D Rennell ◽  
A R Poteete

Abstract The suppression patterns of 11 phage P22 mutants bearing different amber mutations in the gene encoding lysozyme (19) were determined on six different amber suppressor strains. Of the 60 resulting single amino acid substitutions, 18 resulted in defects in lysozyme activity at 30 degrees; an additional seven were defective at 40 degrees. Revertants were isolated on the "missuppressing" hosts following UV mutagenesis; they were screened to distinguish primary- from second-site revertants. It was found that second-site revertants were recovered with greater efficiency if the UV-irradiated phage stocks were passaged through an intermediate host in liquid culture rather than plated directly on the nonpermissive host. Eleven second-site revertants (isolated as suppressors of five deleterious substitutions) were sequenced: four were intragenic, five extragenic; three of the extragenic revertants were found to have alterations near and upstream from gene 19, in gene 13. Lysozyme genes from the intragenic revertant phages were introduced into unmutagenized P22, and found to confer the revertant plating phenotype.


1990 ◽  
Vol 45 (5) ◽  
pp. 436-440 ◽  
Author(s):  
S. Creuzet ◽  
G. Ajlani ◽  
C. Vernotte ◽  
C. Astier

A new Synechocystis 6714 mutant, loxIIA, resistant to the phenol-type herbicide ioxynil was isolated and characterized. The mutation found in the psbA gene (encoding the D1 photosystem II protein) is at the same codon 266 as for the first ioxynil-resistant mutant IoxIA previously selected [G. Ajlani. I. Meyer, C. Vernotte. and C. Astier, FEBS Lett. 246, 207-210 (1989)]. In IoxIIA, the change of Asn 266 to Asp gives a 3 × resistance, whereas in IoxIA, the change of the same amino acid to Thr gives a 10 × resistance. The effect of these different amino acid substitutions on the ioxynil resistance phenotype has allowed us to construct molecular models and calculate the hydrogen-bonding energies between the hydroxyl group of ioxynil and the respective amino acids at position 266.


2009 ◽  
Vol 90 (10) ◽  
pp. 2575-2580 ◽  
Author(s):  
Paula Stewart ◽  
Cuicui Shen ◽  
Deming Zhao ◽  
Wilfred Goldmann

Prion diseases in ruminants, especially sheep scrapie, cannot be fully explained by PRNP genetics, suggesting the influence of a second modulator gene. The SPRN gene is a good candidate for this role. The SPRN gene encodes the shadoo protein (Sho) which has homology to the PRNP gene encoding prion protein (PrP). Murine Sho has a similar neuroprotective activity to PrP and SPRN gene variants are associated with human prion disease susceptibility. SPRN gene sequences were obtained from 14 species in the orders Artiodactyla and Rodentia. We report here the sequences of more than 20 different Sho proteins that have arisen due to single amino acid substitutions and amino acid deletions or insertions. All Sho sequences contained an alanine-rich sequence homologous to a hydrophobic region with amyloidogenic characteristics in PrP. In contrast with PrP, the Sho sequence showed variability in the number of alanine residues.


Sign in / Sign up

Export Citation Format

Share Document