scholarly journals A Comprehensive Account of Escherichia coli Sequence Type 131 in Wastewater Reveals an Abundance of Fluoroquinolone-Resistant Clade A Strains

2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Thomas J. Finn ◽  
Lena Scriver ◽  
Linh Lam ◽  
Mai Duong ◽  
Gisele Peirano ◽  
...  

ABSTRACT In the ten years since its discovery, the Escherichia coli clone sequence type 131 (ST131) has become a major international health threat, with the multidrug-resistant and extended-spectrum β-lactamase (ESBL)-producing clade C emerging as the globally dominant form. ST131 has previously been isolated from wastewater; however, most of these studies selectively screened for ESBL-producing organisms, thereby missing the majority of remaining ST131 clades. In this study, we used a high-throughput PCR-based screening strategy to comprehensively examine wastewater for the presence of ST131 over a 1-year period. Additional multiplex PCRs were used to differentiate clades and obtain an unbiased account of the total ST131 population structure within the collection. Furthermore, antimicrobial susceptibility profiles of all ST131-positive samples were tested against a range of commonly used antibiotics. From a total of over 3,762 E. coli wastewater samples, 1.86% (n = 70) tested positive for ST131, with the majority being clade A isolates. In total, 63% (n = 44) were clade A, 29% (n = 20) were clade B, 1% (n = 1) were clade C0, 6% (n = 4) were clade C1, and 1% (n = 1) were clade C2. In addition, a very high rate of resistance to commonly used antibiotics among wastewater isolates is reported, with 72.7% (n = 32) of clade A resistant to ciprofloxacin and high rates of resistance to gentamicin, sulfamethoxazole-trimethoprim, and tetracycline in clades that are typically sensitive to antibiotics. IMPORTANCE ST131 is a global pathogen. This clone causes urinary tract infections and is frequently isolated from human sources. However, little is known about ST131 from environmental sources. With the widely reported increase in antibiotic concentrations found in wastewater, there is additional selection pressure for the emergence of antibiotic-resistant ST131 in this niche. The unbiased screening approach reported herein revealed that previously antibiotic-sensitive lineages of ST131 are now resistant to commonly used antibiotics present in wastewater systems and may be capable of surviving UV sterilization. This is the most comprehensive account of ST131 in the wastewater niche to date and an important step in better understanding the ecology of this global pathogen.

2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Michael Brilhante ◽  
Juliana Menezes ◽  
Adriana Belas ◽  
Claudia Feudi ◽  
Stefan Schwarz ◽  
...  

ABSTRACT Two multidrug-resistant and carbapenemase-producing Escherichia coli clones of sequence type 410 were isolated from fecal samples of a dog with skin infection on admission to an animal hospital in Portugal and 1 month after discharge. Whole-genome sequencing revealed a 126,409-bp Col156/IncFIA/IncFII multidrug resistance plasmid and a 51,479-bp IncX3 blaOXA-181-containing plasmid. The chromosome and plasmids carried virulence genes characteristic for uropathogenic E. coli, indicating that dogs may carry multidrug-resistant E. coli isolates related to those causing urinary tract infections in humans.


2017 ◽  
Vol 5 (33) ◽  
Author(s):  
Seon-Woo Kim ◽  
Jeffrey S. Karns ◽  
Jo Ann S. Van Kessel ◽  
Bradd J. Haley

ABSTRACT Escherichia coli sequence type 117 (ST117) strains have been recovered from poultry with colibacillosis, as well as from urinary tract infections and fatal septic infections in humans. To further investigate ST117 isolates recovered from nonpoultry food animals, we sequenced the genomes of five ST117 isolates from dairy calves in Pennsylvania.


2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Pan Sun ◽  
Zhenwang Bi ◽  
Maud Nilsson ◽  
Beiwen Zheng ◽  
Björn Berglund ◽  
...  

ABSTRACT We report on the coexistence of mcr-1 and bla CTX-M in multidrug-resistant, extended-spectrum β-lactamase-producing Escherichia coli belonging to the sequence type 10 complex isolated from well water in rural China. Raoultella ornithinolytica with bla KPC-2 was also detected in well water from the same area. This study shows that genes coding for resistance to last-resort antibiotics are present in wells in rural China, indicating a potential source of antibiotic resistance.


2019 ◽  
Vol 57 (6) ◽  
Author(s):  
Cátia Marques ◽  
Adriana Belas ◽  
Catarina Aboim ◽  
Patrícia Cavaco-Silva ◽  
Graça Trigueiro ◽  
...  

ABSTRACTThis study aimed to characterize the fecal colonization and sharing ofKlebsiella pneumoniaestrains between companion animals and humans living in close contact. Fecal samples were collected from 50 healthy participants (24 humans, 18 dogs, and 8 cats) belonging to 18 households. Samples were plated onto MacConkey agar (MCK) plates with and without cefotaxime or meropenem supplementation. Up to fiveK. pneumoniaecolonies per participant were compared by pulsed-field gel electrophoresis (PFGE) after XbaI restriction.K. pneumoniaestrains with unique pulse types from each participant were characterized for antimicrobial susceptibility, virulence genes, and multilocus sequence type (MLST). FecalK. pneumoniaepulse types were compared to those of clinicalK. pneumoniaestrains from animal and human patients with urinary tract infections (n = 104).K. pneumoniaecolonization was detected in nonsupplemented MCK in around 38% of dogs (n = 7) and humans (n = 9).K. pneumoniaestrains isolated from dogs belonged to sequence type 17 (ST17), ST188, ST252, ST281, ST423, ST1093, ST1241, ST3398, and ST3399. None of theK. pneumoniaestrains were multidrug resistant or hypervirulent. Two households included multiple colonized participants. Notably, two colonized dogs within household 15 (H15) shared a strain each (ST252 and ST1241) with one coliving human. One dog from H16 shared one PFGE-undistinguishableK. pneumoniaeST17 strain with two humans from different households; however, the antimicrobial susceptibility phenotypes of these three strains differed. Two main virulence genotypes were detected, namelyfimH-1 mrkD ycfM entB kfuandfimH-1 mrkD ycfM entB kpn. These results highlight the potential role of dogs as a reservoir ofK. pneumoniaeto humans and vice versa. Furthermore, to our best knowledge, this is the first report of healthy humans and dogs sharingK. pneumoniaestrains that were undistinguishable by PFGE/MLST.


2016 ◽  
Vol 55 (1) ◽  
pp. 199-205 ◽  
Author(s):  
Ping Shen ◽  
Maoli Yi ◽  
Ying Fu ◽  
Zhi Ruan ◽  
Xiaoxing Du ◽  
...  

ABSTRACTNew Delhi metallo-β-lactamase-1 (NDM-1)-producingEnterobacteriaceaehas disseminated rapidly throughout the world and poses an urgent threat to public health. Previous studies confirmed that theblaNDM-1gene is typically carried in plasmids but rarely in chromosome. We discovered a multidrug-resistantEscherichia colistrain Y5, originating from a urine sample and containing theblaNDM-1gene, which did not transfer by either conjugation or electrotransformation. We confirmed the possibility of its chromosome location by S1-pulsed-field gel electrophoresis (PFGE) and XbaI-PFGE, followed by Southern blotting. To determine the genomic background ofblaNDM-1, the genome of Y5 was completely sequenced and compared to other reference genomes. The results of our study revealed that this isolate consists of a 4.8-Mbp chromosome and three plasmids, it is an epidemic clone of sequence type (ST) 167, and it shows 99% identity withEscherichia coli6409 (GenBank accession no.CP010371), which lacks the sameblaNDM-1gene-surrounding structure as Y5. TheblaNDM-1gene is embedded in the chromosome along with two tandem copies of an insertion sequence common region 1 (ISCR1) element (sul1-ARR-3-cat-blaNDM-1-bleo-ISCR1), which appears intact in the plasmid fromProteus mirabilis(GenBank accession no.KP662515). The genomic context indicates that the ISCR1element mediated theblaNDM-1transposition from a single source plasmid to the chromosome. Our study is the first report of anEnterobacteriaceaestrain harboring a chromosomally integratedblaNDM-1, which directly reveals the vertical spreading pattern of the gene. Close surveillance is urgently needed to monitor the emergence and potential spread of ST167 strains that harborblaNDM-1.


2014 ◽  
Vol 59 (1) ◽  
pp. 289-298 ◽  
Author(s):  
Karen O'Dwyer ◽  
Aaron T. Spivak ◽  
Karen Ingraham ◽  
Sharon Min ◽  
David J. Holmes ◽  
...  

ABSTRACTGSK2251052, a novel leucyl-tRNA synthetase (LeuRS) inhibitor, was in development for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. In a phase II study (study LRS114688) evaluating the efficacy of GSK2251052 in complicated urinary tract infections, resistance developed very rapidly in 3 of 14 subjects enrolled, with ≥32-fold increases in the GSK2251052 MIC of the infecting pathogen being detected. A fourth subject did not exhibit the development of resistance in the baseline pathogen but posttherapy did present with a different pathogen resistant to GSK2251052. Whole-genome DNA sequencing ofEscherichia coliisolates collected longitudinally from two study LRS114688 subjects confirmed that GSK2251052 resistance was due to specific mutations, selected on the first day of therapy, in the LeuRS editing domain. Phylogenetic analysis strongly suggested that resistantEscherichia coliisolates resulted from clonal expansion of baseline susceptible strains. This resistance development likely resulted from the confluence of multiple factors, of which only some can be assessed preclinically. Our study shows the challenges of developing antibiotics and the importance of clinical studies to evaluate their effect on disease pathogenesis. (These studies have been registered at ClinicalTrials.gov under registration no. NCT01381549 for the study of complicated urinary tract infections and registration no. NCT01381562 for the study of complicated intra-abdominal infections.)


2016 ◽  
Vol 60 (4) ◽  
pp. 1967-1973 ◽  
Author(s):  
Rachel L. Soon ◽  
Justin R. Lenhard ◽  
Zackery P. Bulman ◽  
Patricia N. Holden ◽  
Pamela Kelchlin ◽  
...  

ABSTRACTDespite a dearth of new agents currently being developed to combat multidrug-resistant Gram-negative pathogens, the combination of ceftolozane and tazobactam was recently approved by the Food and Drug Administration to treat complicated intra-abdominal and urinary tract infections. To characterize the activity of the combination product, time-kill studies were conducted against 4 strains ofEscherichia colithat differed in the type of β-lactamase they expressed. The four investigational strains included 2805 (no β-lactamase), 2890 (AmpC β-lactamase), 2842 (CMY-10 β-lactamase), and 2807 (CTX-M-15 β-lactamase), with MICs to ceftolozane of 0.25, 4, 8, and >128 mg/liter with no tazobactam, and MICs of 0.25, 1, 4, and 8 mg/liter with 4 mg/liter tazobactam, respectively. All four strains were exposed to a 6 by 5 array of ceftolozane (0, 1, 4, 16, 64, and 256 mg/liter) and tazobactam (0, 1, 4, 16, and 64 mg/liter) over 48 h using starting inocula of 106and 108CFU/ml. While ceftolozane-tazobactam achieved bactericidal activity against all 4 strains, the concentrations of ceftolozane and tazobactam required for a ≥3-log reduction varied between the two starting inocula and the 4 strains. At both inocula, the Hill plots (R2> 0.882) of ceftolozane revealed significantly higher 50% effective concentrations (EC50s) at tazobactam concentrations of ≤4 mg/liter than those at concentrations of ≥16 mg/liter (P< 0.01). Moreover, the EC50s at 108CFU/ml were 2.81 to 66.5 times greater than the EC50s at 106CFU/ml (median, 10.7-fold increase;P= 0.002). These promising results indicate that ceftolozane-tazobactam achieves bactericidal activity against a wide range of β-lactamase-producingE. colistrains.


2015 ◽  
Vol 60 (3) ◽  
pp. 1888-1891 ◽  
Author(s):  
James R. Johnson ◽  
Stephen B. Porter ◽  
Brian D. Johnston ◽  
Paul Thuras

Eravacycline is a novel broad-spectrum fluorocycline with potent Gram-negative activity, including for multidrug-resistant strains. Among 472Escherichia coliclinical isolates from 24 Veterans Affairs medical centers (in 2011), divided equally as susceptible versus resistant to fluoroquinolones, broth microdilution eravacycline MICs were distributed unimodally, ranging from 0.03 to 1.0 μg/ml (MIC50of 0.125 μg/ml, MIC90of 0.25 μg/ml). Eravacycline MICs were ∼2-fold higher among fluoroquinolone-resistant, gentamicin-resistant, multidrug-resistant, and sequence type 131 (ST131) isolates (P< 0.01 for each comparison).


2021 ◽  
Vol 10 (31) ◽  
Author(s):  
Amanda Chamieh ◽  
Rita Zgheib ◽  
Sabah El-Sawalhi ◽  
Eid Azar ◽  
Jean-Marc Rolain

We present the genome sequences of two carbapenemase-producing sequence type 405 Escherichia coli clinical isolates, strains Marseille-Q1950 and Marseille-Q1951. The isolates were obtained 1 month apart during the patient’s hospitalization in Lebanon, in May (Marseille-Q1950) and June (Marseille-Q1951) 2019. The genome sizes of strains Marseille-Q1950 and Marseille-Q1951 were 5,181,515 bp and 5,213,451 bp, respectively.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Sohei Harada ◽  
Masahiro Suzuki ◽  
Toshiharu Sasaki ◽  
Aki Sakurai ◽  
Masato Inaba ◽  
...  

Although patients with history of international hospitalization are often subject to screening for multidrug-resistant organisms, it is unclear whether patients who reside in countries where carbapenemase-producing Enterobacterales (CPE) is endemic but have no history of local hospitalization contribute to the transmission of CPE. In this study, NDM-5-producing and OXA-48-producing Escherichia coli sequence type (ST) 648, a recently recognized high-risk, multidrug-resistant clone, were detected from two overseas visitors without previous medical exposure.


Sign in / Sign up

Export Citation Format

Share Document