scholarly journals Evaluation of Nostoc Strain ATCC 53789 as a Potential Source of Natural Pesticides

2004 ◽  
Vol 70 (6) ◽  
pp. 3313-3320 ◽  
Author(s):  
Natascia Biondi ◽  
Raffaella Piccardi ◽  
M. Cristina Margheri ◽  
Liliana Rodolfi ◽  
Geoffrey D. Smith ◽  
...  

ABSTRACT The cyanobacterium Nostoc strain ATCC 53789, a known cryptophycin producer, was tested for its potential as a source of natural pesticides. The antibacterial, antifungal, insecticidal, nematocidal, and cytotoxic activities of methanolic extracts of the cyanobacterium were evaluated. Among the target organisms, nine fungi (Armillaria sp., Fusarium oxysporum f. sp. melonis, Penicillium expansum, Phytophthora cambivora, P. cinnamomi, Rhizoctonia solani, Rosellinia, sp., Sclerotinia sclerotiorum, and Verticillium albo-atrum) were growth inhibited and one insect (Helicoverpa armigera) was killed by the extract, as well as the two model organisms for nematocidal (Caenorhabditis elegans) and cytotoxic (Artemia salina) activity. No antibacterial activity was detected. The antifungal activity against S. sclerotiorum was further studied with both extracts and biomass of the cyanobacterium in a system involving tomato as a host plant. Finally, the herbicidal activity of Nostoc strain ATCC 53789 was evaluated against a grass mixture. To fully exploit the potential of this cyanobacterium in agriculture as a source of pesticides, suitable application methods to overcome its toxicity toward plants and nontarget organisms must be developed.

2021 ◽  
Vol 11 (13) ◽  
pp. 6008
Author(s):  
Micael F. M. Gonçalves ◽  
Ana Paço ◽  
Luís F. Escada ◽  
Manuela S. F. Albuquerque ◽  
Carlos A. Pinto ◽  
...  

There is an urgent need for new substances to overcome current challenges in the health sciences. Marine fungi are known producers of numerous compounds, but the manipulation of growth conditions for optimal compound production can be laborious and time-consuming. In Portugal, despite its very long coastline, there are only a few studies on marine fungi. From a collection of Portuguese marine fungi, we screened for antimicrobial, antioxidant, enzymatic, and cytotoxic activities. Mycelia aqueous extracts, obtained by high pressure-assisted extraction, and methanolic extracts of culture media showed high antioxidant, antimicrobial, and cytotoxic activities. The mycelium extracts of Cladosporium rubrum showed higher antioxidant potential compared to extracts from other fungi. Mycelia and culture media extracts of Aspergillus affinis and Penicillium lusitanum inhibited the growth of Staphylococcus aureus, Kocuria rhizophila, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, including multiresistant strains. Penicillium lusitanum and Trichoderma aestuarinum inhibited the growth of clinical strains of Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis. All extracts from culture media were cytotoxic to Vero cells. Sea salt induced alterations in the mycelium’s chemical composition, leading to different activity profiles.


2021 ◽  
Vol 45 (2) ◽  
pp. 203-213
Author(s):  
Mariana Oaldje-Pavlovic ◽  
Ana Alimpic-Aradski ◽  
Aleksandra Savic ◽  
Smiljana Jankovic ◽  
Milena Milutinovic ◽  
...  

This study was aimed at evaluating the antioxidant and antidiabetic activities of methanolic extracts of peel, flesh and mixed peel, and flesh, as well as the cytotoxic activity of mixed peel and flesh extracts obtained from fruits of six traditional pear varieties (Vidovaca, Lubenicarka, Karamanka, Jeribasma, Loncara and Takisa), one commercial variety (Williams Bartlett) and a wild pear (Pyrus communis) from Serbia. The tested extracts showed strong antioxidant activity regarding the prevention of ?-carotene bleaching and high ?-glucosidase inhibition, and no significant cytotoxic potential, with the exception of the Williams Bartlett and Pyrus communis extracts. Overall, the most potent fruit part was shown to be the peel. The most active variety in all of the applied antioxidant and antidiabetic assays was Takisa, while the wild pear, P. communis, was the most effective in inhibiting the proliferation of cancer cells. In conclusion, several methanolic extracts of pear fruit are promising candidates for further studies regarding the prevention and treatment of pathological conditions associated with the effects of oxidative stress, such as diabetes and even colorectal cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bibianne Waiganjo ◽  
Gervason Moriasi ◽  
Jared Onyancha ◽  
Nelson Elias ◽  
Francis Muregi

Malaria is a deadly disease caused by a protozoan parasite whose mode of transmission is through a female Anopheles mosquito. It affects persons of all ages; however, pregnant mothers, young children, and the elderly suffer the most due to their dwindled immune state. The currently prescribed antimalarial drugs have been associated with adverse side effects ranging from intolerance to toxicity. Furthermore, the costs associated with conventional approach of managing malaria are arguably high especially for persons living in low-income countries, hence the need for alternative and complementary approaches. Medicinal plants offer a viable alternative because of their few associated side effects, are arguably cheaper, and are easily accessible. Based on the fact that studies involving antimalarial medicinal plants as potential sources of efficacious and cost-effective pharmacotherapies are far between, this research was designed to investigate antiplasmodial and cytotoxic activities of organic and aqueous extracts of selected plants used by Embu traditional medicine practitioners to treat malaria. The studied plants included Erythrina abyssinica (stem bark), Schkuhria pinnata (whole plant), Sterculia africana (stem bark), Terminalia brownii (leaves), Zanthoxylum chalybeum (leaves), Leonotis mollissima (leaves), Carissa edulis (leaves), Tithonia diversifolia (leaves and flowers), and Senna didymobotrya (leaves and pods). In vitro antiplasmodial activity studies of organic and water extracts were carried out against chloroquine-sensitive (D6) and chloroquine-resistance (W2) strains of Plasmodium falciparum. In vivo antiplasmodial studies were done by Peter’s four-day suppression test to test for their in vivo antimalarial activity against P. berghei. Finally, cytotoxic effects and safety of the studied plant extracts were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid calorimetric assay technique. The water and methanolic extracts of T. brownii and S. africana and dichloromethane extracts of E. abyssinica, S. pinnata, and T. diversifolia leaves revealed high in vitro antiplasmodial activities (IC50≤10 μg/ml). Further, moderate in vivo antimalarial activities were observed for water and methanolic extracts of L. mollissima and S. africana and for dichloromethane extracts of E. abyssinica and T. diversifolia leaves. In this study, aqueous extracts of T. brownii and S. africana demonstrated high antiplasmodial activity and high selectivity indices values (SI≥10) and were found to be safe. It was concluded that T. brownii and S. africana aqueous extracts were potent antiplasmodial agents. Further focused studies geared towards isolation of active constituents and determination of in vivo toxicities to ascertain their safety are warranted.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 616 ◽  
Author(s):  
Catarina Garcia ◽  
Epole Ntungwe ◽  
Ana Rebelo ◽  
Cláudia Bessa ◽  
Tijana Stankovic ◽  
...  

The Plectranthus genus is commonly used in traditional medicine due to its potential to treat several illnesses, including bacterial infections and cancer. As such, aiming to screen the antibacterial and cytotoxic activities of extracts, sixteen selected Plectranthus species with medicinal potential were studied. In total, 31 extracts obtained from 16 Plectranthus spp. were tested for their antibacterial and anticancer properties. Well diffusion method was used for preliminary antibacterial screening. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the five most active acetonic extracts (P. aliciae, P. japonicus, P. madagascariensis var. “Lynne”, P. stylesii, and P. strigosus) were determined. After preliminary toxicity evaluation on Artemia salina L., their cytotoxic properties were assessed on three human cancer cell lines (HCT116, MCF-7, and H460). These were also selected for mechanism of resistance studies (on NCI-H460/R and DLD1-TxR cells). An identified compound—parvifloron D—was tested in a pair of sensitive and MDR-Multidrug resistance cancer cells (NCI-H460 and NCI-H460/R) and in normal bronchial fibroblasts MRC-5. The chemical composition of the most active extract was studied through high performance liquid chromatography with a diode array detector (HPLC-DAD/UV) and liquid chromatography–mass spectrometry (LC–MS). Overall, P. strigosus acetonic extract showed the strongest antimicrobial and cytotoxic potential that could be explained by the presence of parvifloron D, a highly cytotoxic diterpene. This study provides valuable information on the use of the Plectranthus genus as a source of bioactive compounds, namely P. strigosus with the potential active ingredient the parvifloron D.


2014 ◽  
Vol 155 (2) ◽  
pp. 1156-1163 ◽  
Author(s):  
Wendy Itzel Escobedo Hinojosa ◽  
Macdiel Acevedo Quiróz ◽  
Irma Romero Álvarez ◽  
Patricia Escobar Castañeda ◽  
María Luisa Villarreal ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
N. M. U. Seruji ◽  
H. Y. Khong ◽  
C. J. Kutoi

In our continuing interest on SarawakGarciniaspecies, we carried out the evaluation of antioxidant, anti-inflammatory and cytotoxic activities on the methanolic extracts ofGarcinia nervosa. The extracts were prepared from its air-dried grounded leaves and barks. The evaluation of antioxidant activities was done using the (2,2-diphenyl-1-picrylhydrazyl) DPPH radical scavenging assay and the result showed high radical scavenging activities. Meanwhile, the anti-inflammatory evaluation was performed using the lipoxygenase assay, hyaluronidase assay, and xanthine oxidase assay which showed, both of these extracts exhibited high anti-inflammatory properties. The lipoxygenase assay showed a high inhibition of enzyme activity for the barks extracts and a moderate enzyme activity for the leaves extracts. However, there were low inhibitions for both extracts in the hyaluronidase assay and only the barks extracts exhibited moderate antigout properties in the xanthine oxidase assay. For the cytotoxic assay, the extracts exhibited positive responses against the three cancer cell lines, the HeLa cell lines, MCF-7 cell lines, and HT-29 cell lines. Thus,Garcinia nervosacontains high antioxidativeand anti-inflammation properties, which have great potential in the development of pharmaceutical and dermatological products.


2017 ◽  
Vol 65 (4) ◽  
pp. 1459
Author(s):  
Karla Carmelita Pérez-Treviño ◽  
Lucio Galaviz ◽  
Jesús Mario Iracheta-Villarreal ◽  
Eliud Alonso Lucero-Velasco ◽  
Zinnia Judith Molina-Garza

American trypanosomiasis is a potentially lethal disease caused by the hemoflagellate protozoan Trypanosoma cruzi. This neglected disease affects from 6 to 7 million people worldwide. Currently there are only two medicines to treat this disease: beznidazol and nifurtimox, both effective if they are administrated in the acute phase of infection, although their effectiveness fades away in the chronic phase; it also induces significant side effects. The aim of this study is to screen the trypanocidal activity of methanolic extracts from Hematoxilum brasiletto, Marrubium vulgare, Schinus molle, and Cympongon citratus, against T. cruzi epimastigotes, followed by the chromatographic separation, and identification of active compounds of the best candidate by colored chemical reactions; furthermore, it was also determined their cytotoxic effect in human lymphocytes and the brine shrimp Artemia salina. The extract of H. brasiletto showed the highest anti-T. cruzi activity with a inhibitory concentration (IC50) of 543 µg/mL; in descending order, it was followed by M. vulgare (IC50 = 647 µg/mL), S. molle (IC = 827 µg/mL) and finally, C. citratus (IC = 1 210 µg/mL). The chromatographic fraction Fr22 from H. brasiletto showed the best anti-T. cruzi effectivity (IC50 = 0.238 mg/mL), when compared to the other fraction or the whole extract, with no cytotoxic effect against human lymphocytes or A. salina. The active compounds were identified as tannins, quinones, flavonoids and sesquiterpenlactones. In conclusion, active compounds against T. cruzi were identified for the first time in H. brasiletto, with non-cytotoxic effects. The H. brasiletto extract, according to our results, could be used as an alternative treatment for the Chagas disease; however, additional studies will be necessary to test their activity and doses in a murine model, with the complete identification of the active compounds, on which we are investigating.


2020 ◽  
Author(s):  
Magda Lewandowska ◽  
Yael Hazan ◽  
Yehu Moran

AbstractThe role of viruses in forming a stable holobiont has been a subject of extensive research in the recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed almost complete lack of viruses in the samples from the early developmental stages which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for functional studies of viruses and antiviral systems in this lab model cnidarian.


2022 ◽  
Vol 82 ◽  
Author(s):  
E. M. S. Bomfim ◽  
A. A. O. P. Coelho ◽  
M. C. Silva ◽  
E. J. Marques ◽  
V. L. C. Vale

Abstract Plants possess a renewable source of metabolites with enormous chemical structural diversity, which may have potential therapeutic relevance. Furthermore, this chemical diversity favors the possibility of finding new and different chemical constituents with antimicrobial, antioxidant and anti-tumor activities. This work analyzed preliminary phytochemical profiles and evaluated the antimicrobial, antioxidant and cytotoxic activities of hexane extracts of leaves of ten species of the family Melastomataceae. Phytochemical screening was performed using staining methods while total phenols and flavonoids were quantified by spectrophotometry. Antimicrobial activity was evaluated using the disk diffusion method. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazil (DPPH) method. Toxicity was recorded using the lethality test with Artemia salina Leach (1819). Cytotoxic activity of the extracts was assessed in vitro with acute monocytic leukemia cells (THP-1). Phytochemical analysis detected the presence of tannins, terpenes, steroids, polyphenols and flavonoids and the absence of alkaloids. Clidemia capitellata (Bonpl.) D. Don had the greatest amount of polyphenols (205.95 mg/g ± 4.14) while Clidemia hirta (L.) D. Don had the highest content of total flavonoids (143.99 mg/g ± 4.18). The hexane extracts did not show antimicrobial activity nor toxicity against Artemia salina. The extract of Tibouchina francavillana Cogn. was the most active in sequestering the DPPH radical. The extracts showed cytotoxicity in THP-1 cells with the appearance of apoptotic bodies and cell death. The extracts of Miconia amoena, Clidemia sericea and Clidemia capitellata are non-toxic against Artemia salina and induce the formation of apoptotic bodies and cell death of the THP-1 lineage.


Sign in / Sign up

Export Citation Format

Share Document