scholarly journals Staphylococcus aureus Induces Expression of Receptor Activator of NF-κB Ligand and Prostaglandin E2 in Infected Murine Osteoblasts

2008 ◽  
Vol 76 (11) ◽  
pp. 5120-5126 ◽  
Author(s):  
Shankari N. Somayaji ◽  
Samantha Ritchie ◽  
Mahnaz Sahraei ◽  
Ian Marriott ◽  
Michael C. Hudson

ABSTRACT Osteomyelitis is an inflammatory disease of the bone that is characterized by the presence of necrotic bone tissue and increased osteoclast activity. Staphylococcus aureus is responsible for approximately 80% of all cases of human osteomyelitis. While the disease is especially difficult to treat, the pathogenesis of S. aureus-induced osteomyelitis is poorly understood. Elucidating the molecular mechanisms by which S. aureus induces osteomyelitis could lead to a better understanding of the disease and its progression and development of new treatments. Osteoblasts can produce several soluble factors that serve to modulate the activity or formation of osteoclasts. Receptor activator of NF-κB ligand (RANK-L) and prostaglandin E2 (PGE2) are two such molecules which can promote osteoclastogenesis and stimulate bone resorption. In addition, previous studies in our laboratory have shown that osteoblasts produce inflammatory cytokines, such as interleukin 6, following infection with S. aureus, which could induce COX-2 and in turn PGE2, further modulating osteoclast recruitment and differentiation. Therefore, we hypothesized that following infection with S. aureus, osteoblasts will express increased levels of RANK-L and PGE2. The results presented in this study provide evidence for the first time that RANK-L mRNA and protein and PGE2 expression are upregulated in S. aureus-infected primary osteoblasts. In addition, through the use of the specific COX-2 inhibitor NS 398, we show that when PGE2 production is inhibited, RANK-L production is decreased. These data suggest a mechanism whereby osteoblasts regulate the production of RANK-L during infection.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
John W. Steinke ◽  
Spencer C. Payne ◽  
Larry Borish

Aspirin-exacerbated respiratory disease (AERD) is explained in part by over-expression of 5-lipoxygenase, leukotriene C4 synthase (LTC4S) and the cysteinyl leukotriene (CysLT) receptors (CysLT1 and 2), resulting in constitutive over-production of CysLTs and the hyperresponsiveness to CysLTs that occurs with aspirin ingestion. Increased levels of IL-4 have been found in the sinus mucosa and nasal polyps of AERD subjects. Previous studies demonstrated that IL-4 is primarily responsible for the upregulation of LTC4S by mast cells and the upregulation of CysLT1 and 2 receptors on many immune cell types. Prostaglandin E2 (PGE2) acts to prevent CysLT secretion by inhibiting mast cell and eosinophil activation. PGE2 concentrations are reduced in AERD reflecting diminished expression of cyclooxygenase (COX)-2. IL-4 can inhibit basal and stimulated expression of COX-2 and microsomal PGE synthase 1 leading to decreased capacity for PGE2 secretion. Thus, IL-4 plays an important pathogenic role in generating the phenotype of AERD. This review will examine the evidence supporting this hypothesis and describe a model of how aspirin desensitization provides therapeutic benefit for AERD patients.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Vanessa Moreira ◽  
Bruno Lomonte ◽  
Marco Aurélio Ramirez Vinolo ◽  
Rui Curi ◽  
José María Gutiérrez ◽  
...  

Phospholipases A2(PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2named MT-III leads to prostaglandin (PG)E2biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.


2007 ◽  
Vol 18 (6) ◽  
pp. 2137-2148 ◽  
Author(s):  
Anke Doller ◽  
Andrea Huwiler ◽  
Roswitha Müller ◽  
Heinfried H. Radeke ◽  
Josef Pfeilschifter ◽  
...  

In this study, we investigated the molecular mechanisms underlying the ATP analogue adenosine-5′-O-(3-thio)triphosphate–induced nucleocytoplasmic shuttling of the mRNA stabilizing factor HuR in human (h) mesangial cells (MC). Using synthetic protein kinase C (PKC) inhibitors and small interfering RNA approaches, we demonstrated that knockdown of PKCα efficiently blocked the ATP-dependent nuclear HuR export to the cytoplasm. The functional importance of PKCα in HuR shuttling is highlighted by the high cytosolic HuR content detected in hMC stably overexpressing PKCα compared with mock-transfected cells. The ATP-induced recruitment of HuR to the cytoplasm is preceded by a direct interaction of PKCα with nuclear HuR and accompanied by increased Ser phosphorylation as demonstrated by coimmunoprecipitation experiments. Mapping of putative PKC target sites identified serines 158 and 221 as being indispensable for HuR phosphorylation by PKCα. RNA pull-down assay and RNA electrophoretic mobility shift assay demonstrated that the HuR shuttling by ATP is accompanied by an increased HuR binding to cyclooxygenase (COX)-2 mRNA. Physiologically, the ATP-dependent increase in RNA binding is linked with an augmentation in COX-2 mRNA stability and subsequent increase in prostaglandin E2 synthesis. Regulation of HuR via PKCα-dependent phosphorylation emphasizes the importance of posttranslational modification for stimulus-dependent HuR shuttling.


2009 ◽  
Vol 297 (5) ◽  
pp. L892-L902 ◽  
Author(s):  
Chuen-Mao Yang ◽  
I-Ta Lee ◽  
Chih-Chung Lin ◽  
Ya-Lin Yang ◽  
Shue-Fen Luo ◽  
...  

Exposure to cigarette smoke extract (CSE) leads to airway or lung inflammation, which may be mediated through cyclooxygenase-2 (COX-2) expression and its product prostaglandin E2 (PGE2) synthesis. The aim of this study was to investigate the molecular mechanisms underlying CSE-induced COX-2 expression in human tracheal smooth muscle cells (HTSMCs). Here, we describe that COX-2 induction is dependent on PKCα/c-Src/EGFR, PDGFR/PI3K/Akt/NF-κB signaling in HTSMCs. CSE stimulated the phosphorylation of c-Src, EGFR, PDGFR, and Akt, which were inhibited by pretreatment with the inhibitor of PKCα (Gö6976 or Gö6983), c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), or PI3K (LY294002). Moreover, CSE induced a significant increase in COX-2 expression, which was reduced by pretreatment with these inhibitors or transfection with siRNA of PKCα, Src, or Akt. Furthermore, CSE-stimulated NF-κB p65 phosphorylation and translocation were also attenuated by pretreatment with Gö6976, PP1, AG1478, AG1296, or LY294002. CSE-induced COX-2 expression was also mediated through the recruitment of p300 associated with NF-κB in HTSMCs, revealed by coimmunoprecipitation and Western blot analysis. In addition, pretreatment with the inhibitors of NF-κB (helenalin) and p300 (garcinol) or transfection with p65 siRNA and p300 siRNA markedly inhibited CSE-regulated COX-2 expression. However, CSE-induced PGE2 generation was reduced by pretreatment with the inhibitor of COX-2 (NS-398). These results demonstrated that in HTSMCs, CSE-induced COX-2-dependent PGE2 generation was mediated through PKCα/c-Src/EGFR, PDGFR/PI3K/Akt leading to the recruitment of p300 with NF-κB complex.


2009 ◽  
Vol 297 (6) ◽  
pp. E1291-E1303 ◽  
Author(s):  
Akito Kadotani ◽  
Yo Tsuchiya ◽  
Hiroyasu Hatakeyama ◽  
Hideki Katagiri ◽  
Makoto Kanzaki

In skeletal muscle, saturated free fatty acids (FFAs) act as proinflammatory stimuli, and cyclooxygenase-2 (COX-2) is a pro/anti-inflammatory enzyme induced at sites of inflammation, which contributes to prostaglandin production. However, little is known about the regulation of COX-2 expression and its responses to FFAs in skeletal muscle. Herein, we examined the effects of saturated and unsaturated FFAs, including a recently identified lipokine (lipid hormone derived from adipocytes), palmitoleate, on COX-2 expression in C2C12 myotubes as a skeletal muscle model. Exposure of myotubes to saturated FFAs [palmitate (16:0) and stearate (18:0)], but not to unsaturated FFAs [palmitoleate (16:1), oleate (18:1), and linoleate (18:2)], led to a slow-onset induction of COX-2 expression and subsequent prostaglandin E2 production via mechanisms involving the p38 MAPK and NF-κB but not the PKCθ signaling cascades. Pharmacological modulation of mitochondrial oxidative function failed to interfere with COX-2 expression, suggesting the mitochondrial overload/excessive β-oxidation contribution to this event to be minimal. On the contrary, unsaturated FFAs appeared to effectively antagonize palmitate-induced COX-2 expression with markedly different potencies (linoleate > oleate > palmitoleate), being highly associated with the suppressive profile of each unsaturated FFA toward palmitate-evoked intracellular signals, including p38, JNK, ERK1/2 MAPKs, and PKCθ, as well as IκB degradation. In addition, our data suggest little involvement of PPAR in the protective actions of unsaturated FFAs against palmitate-induced COX-2 expression. No direct contribution of the increased COX-2 activity in generating palmitate-induced insulin resistance was detected, at least in terms of insulin-responsive Akt phosphorylation and GLUT4 translocation. Taken together, our data provide a novel insight into the molecular mechanisms responsible for the FFA-induced COX-2 expression in skeletal muscle and raise the possibility that, in skeletal myocytes, COX-2 and its product prostaglandins may play an important role in the complex inflammation responses caused by elevated FFAs, for example, in the diabetic state.


2018 ◽  
Author(s):  
Xin Tan ◽  
Mathieu Coureuil ◽  
Elodie Ramond ◽  
Daniel Euphrasie ◽  
Marion Dupuis ◽  
...  

AbstractBackgroundChronic lung infection of cystic fibrosis (CF) patients by Staphylococcus aureus is a well-established epidemiological fact. Indeed, S. aureus is the most commonly identified pathogen in the lungs of CF patients. Strikingly the molecular mechanisms underlying S. aureus persistency are not understood.MethodsWe selected pairs of sequential S. aureus isolates from 3 patients with CF and from one patient with non-CF chronic lung disease. We used a combination of genomic, proteomic and metabolomic approaches with functional assays for in-depth characterization of S. aureus long-term persistence.ResultsFor the first time, we show that late S. aureus isolates from CF patients have an increased ability for intracellular survival in CFBE-F508del cells compared to ancestral early isolates. Importantly, the increased ability to persist intracellularly was confirmed for S. aureus isolates within the own patient F508del epithelial cells. An increased ability to form biofilm was also demonstrated.Furthermore, we identified the underlying genetic modifications inducing altered protein expression profiles and notable metabolic changes. These modifications affect several metabolic pathways and virulence regulators that could constitute therapeutic targets.ConclusionsOur results strongly suggest that the intracellular environment might constitute an important niche of persistence and relapse necessitating adapted antibiotic treatments.SummaryS. aureus persists for years in the lungs of patients with cystic fibrosis despite antibiotic therapies. We demonstrate that S. aureus adaptation leads to increased intracellular persistence suggesting a key role for intracellular niche during S. aureus chronic lung infection.


2001 ◽  
Vol 120 (5) ◽  
pp. A573-A573
Author(s):  
J SHODA ◽  
T ASANO ◽  
T KAWAMOTO ◽  
Y MATSUZAKI ◽  
N TANAKA ◽  
...  

2019 ◽  
Vol 23 (2) ◽  
pp. 117-119 ◽  
Author(s):  
D. N. Paskalev ◽  
B. T. Galunska ◽  
D. Petkova-Valkova

Tamm–Horsfall Protein (uromodulin) is named after Igor Tamm and Franc Horsfall Jr who described it for the first time in 1952. It is a glycoprotein, secreted by the cells in the thick ascending limb of the loop of Henle. This protein will perform a number of important pathophysiological functions, including protection against uroinfections, especially caused by E. Сoli, and protection against formation of calcium concernments in the kidney. Igor Tamm (1922-1995) is an outstanding cytologist, virologist and biochemist. He is one of the pioneers in the study of viral replication. He was born in Estonia and died in the USA. In 1964 he was elected for a professorship in Rockefeller Institute for Medical Research, where has been working continuously. Since 1959, he became a head of the virology lab established by his mentor and co-author Franc Horsfall. In the course of studies on the natural inhibitor of viral replication, Tamm and Horsfall isolated and characterized biochemically a new protein named after their names. Franc Lappin Horsfall Jr (1906-1971) was a well-known clinician and virologist with remarkable achievements in internal medicine. He was born and died in the USA. He worked in the Rockefeller Hospital from 1934 to 1960, then in the Center for Cancer Research at the Sloan-Kettering Institute. Here he was a leader of a research team studying the molecular mechanisms of immunity, the effects of chemotherapy with benzimidazole compounds (together with I. Tamm), coxsackie viruses, herpes simplex virus, etc. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Coral García-Pastor ◽  
Selma Benito-Martínez ◽  
Ricardo J. Bosch ◽  
Ana B. Fernández-Martínez ◽  
Francisco J. Lucio-Cazaña

AbstractProximal tubular cells (PTC) are particularly vulnerable to hypoxia-induced apoptosis, a relevant factor for kidney disease. We hypothesized here that PTC death under hypoxia is mediated by cyclo-oxygenase (COX-2)-dependent production of prostaglandin E2 (PGE2), which was confirmed in human proximal tubular HK-2 cells because hypoxia (1% O2)-induced apoptosis (i) was prevented by a COX-2 inhibitor and by antagonists of prostaglandin (EP) receptors and (ii) was associated to an increase in intracellular PGE2 (iPGE2) due to hypoxia-inducible factor-1α-dependent transcriptional up-regulation of COX-2. Apoptosis was also prevented by inhibitors of the prostaglandin uptake transporter PGT, which indicated that iPGE2 contributes to hypoxia-induced apoptosis (on the contrary, hypoxia/reoxygenation-induced PTC death was exclusively due to extracellular PGE2). Thus, iPGE2 is a new actor in the pathogenesis of hypoxia-induced tubular injury and PGT might be a new therapeutic target for the prevention of hypoxia-dependent lesions in renal diseases.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


Sign in / Sign up

Export Citation Format

Share Document