scholarly journals CD4+ CD25+ Foxp3+ Regulatory T Cells, Dendritic Cells, and Circulating Cytokines in Uncomplicated Malaria: Do Different Parasite Species Elicit Similar Host Responses?

2010 ◽  
Vol 78 (11) ◽  
pp. 4763-4772 ◽  
Author(s):  
Raquel M. Gonçalves ◽  
Karina C. Salmazi ◽  
Bianca A. N. Santos ◽  
Melissa S. Bastos ◽  
Sandra C. Rocha ◽  
...  

ABSTRACT Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4+ CD25+ Foxp3+ Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123+), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-α) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and long-lasting protective immunity to malaria.

2001 ◽  
Vol 69 (1) ◽  
pp. 518-528 ◽  
Author(s):  
Deborah A. Bouis ◽  
Taissia G. Popova ◽  
Akira Takashima ◽  
Michael V. Norgard

ABSTRACT Cell-mediated immune processes play a prominent role in the clinical manifestations of syphilis, a sexually transmitted disease of humans caused by spirochetal bacterium Treponema pallidum. The immune cell type that initiates the early immune response toT. pallidum thus far has not been identified. However, dendritic cells (DCs) are the first immune-competent cells to encounter antigens within skin or mucous membranes, the principal sites of early syphilitic infection. In the present study, immature DC line XS52, derived from murine skin, was utilized to examine T. pallidum-DC interactions and subsequent DC activation (maturation). Electron microscopy revealed that T. pallidumwas engulfed by DCs via both coiling and conventional phagocytosis and was delivered to membrane-bound vacuoles. The XS52 DC line expressed surface CD14 and mRNA for Toll-like receptors 2 and 4, molecules comprising important signaling components for immune cell activation by bacterial modulins. Both T. pallidum and a synthetic lipopeptide (corresponding to the 47-kDa major membrane lipoprotein) activated the XS52 DC line, as indicated by the secretion of interleukin-12 (IL-12), IL-1β, tumor necrosis factor alpha, and IL-6 and elevated surface expression of CD54. The combined data support the contention that DCs stimulated by T. pallidum and/or its proinflammatory membrane lipoproteins are involved in driving the cellular immune processes that typify syphilis.


2005 ◽  
Vol 79 (4) ◽  
pp. 2432-2439 ◽  
Author(s):  
Dupeh R. Palmer ◽  
Peifang Sun ◽  
Christina Celluzzi ◽  
John Bisbing ◽  
Somnang Pang ◽  
...  

ABSTRACT Dendritic cells (DCs) play a central role as major targets of dengue virus (DV) infections and initiators of antiviral immune responses. Previous observations showed that DCs are activated by infection, presumably acquiring the capacity to promote cell-mediated immunity. However, separate evaluations of the maturation profiles of infected and uninfected bystander cells show that infection impairs the ability of DCs to upregulate cell surface expression of costimulatory, maturation, and major histocompatibility complex molecules, resulting in reduced T-cell stimulatory capacity. Infected DCs failed to respond to tumor necrosis factor alpha as an additional maturation stimulus and were apoptotic. Interleukin 10 (IL-10) was detected in supernatants from cultures of DV-infected DCs and cocultures of DCs and T cells. Taken together, these results constitute an immune evasion strategy used by DV that directly impairs antigen-presenting cell function by maturation blockade and induction of apoptosis.


2020 ◽  
Vol 21 (21) ◽  
pp. 8203 ◽  
Author(s):  
Dmitry V. Chistyakov ◽  
Arina I. Nikolskaya ◽  
Sergei V. Goriainov ◽  
Alina A. Astakhova ◽  
Marina G. Sergeeva

Astrocytes are glial cells that play an important role in neuroinflammation. Astrocytes respond to many pro-inflammatory stimuli, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4). Regulatory specificities of inflammatory signaling pathways are still largely unknown due to the ectodermal origin of astrocytes. Recently, we have shown that hyaluronic acid (HA) may form part of astrocyte inflammatory responses. Therefore, we tested 4-methylumbelliferone (4-MU), a specific inhibitor of HA synthesis, as a possible regulator of LPS-mediated responses. Rat primary astrocytes were treated with LPS with and without 4-MU and gene expression levels of inflammatory (interleukins 1β, (IL-1β), 6, (IL-6), tumor necrosis factor alpha TNFα,) and resolution interleukin 10 (IL-10) markers were evaluated via real-time PCR and western blot. The release of cytokines and HA was determined by ELISA. Oxylipin profiles were measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Our data show that 4-MU (i) has anti-inflammatory effects in the course of TLR4 activation, decreasing the cytokines level TNFα, IL-6 and IL-1β and increasing IL-10, (ii) downregulates prostaglandin synthesis but not via cyclooxygenases COX-1 and COX-2 pathways, (iii) modulates HA synthesis and decreases LPS-induced HA synthase mRNA expression (HAS-1, HAS-2) but does not have an influence on HAS-3, HYAL1 and HYAL2 mRNAs; (iv) the effects of 4-MU are predominantly revealed via JNK but not p38, ERK mitogen-activated protein kinases (MAPKs) or nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathways. For the first time, it is shown that 4-MU possesses the useful potential to regulate an inflammatory astrocyte response.


2008 ◽  
Vol 76 (9) ◽  
pp. 4322-4331 ◽  
Author(s):  
Abraham Guerrero ◽  
Bettina C. Fries

ABSTRACT Cryptococcus neoformans is an encapsulated opportunistic organism that can undergo phenotypic switching. In this process, the parent smooth colony (SM) switches to a more virulent mucoid colony (MC) variant. The host responses mounted against the SM and MC variants differ, and lower tissue interleukin 10 (IL-10) levels are consistently observed in lungs of MC-infected C57BL/6 and BALB/c mice. This suggested different roles of this cytokine in SM and MC infections. The objective of this study was to compare survival rates and characterize the host responses of SM- and MC-infected IL-10-depleted (IL-10−/−) mice, which exhibit a Th1-polarized immune response and are considered resistant hosts. As expected, SM-infected IL-10−/− mice survived longer than wild-type mice, whereas MC-infected IL-10−/− mice did not exhibit a survival benefit. Consistent with this observation, we demonstrated marked differences in the inflammatory responses of SM- and MC-infected IL-10−/− and wild-type mice. This included a more Th1-polarized inflammatory response with enhanced recruitment of macrophages and natural killer and CD8 cells in MC- than in SM-infected IL-10−/− and wild-type mice. In contrast, both SM-infected IL-10−/− and wild-type mice exhibited higher recruitment of CD4 cells, consistent with enhanced survival and differences in recruitment and Th1/Th2 polarization. Lung tissue levels of IL-21, IL-6, IL-4, transforming growth factor beta, IL-12, and gamma interferon were higher in MC-infected IL-10−/− and wild-type mice than in SM-infected mice, whereas tumor necrosis factor alpha levels were higher in SM-infected IL-10−/− mice. In conclusion, the MC variant elicits an excessive inflammatory response in a Th1-polarized host environment, and therefore, the outcome is negatively affected by the absence of IL-10.


2004 ◽  
Vol 72 (8) ◽  
pp. 4385-4392 ◽  
Author(s):  
Sabrina Mariotti ◽  
Raffaela Teloni ◽  
Elisabetta Iona ◽  
Lanfranco Fattorini ◽  
Giulia Romagnoli ◽  
...  

ABSTRACT Dendritic cells (DCs) are critical for initiating a pathogen-specific T-cell response. During chronic infections the pool of tissue DCs must be renewed by recruitment of both circulating DC progenitors and in loco differentiating monocytes. However, the interaction of monocytes with pathogens could affect their differentiation. Mycobacterium tuberculosis has been shown to variably interfere with the generation and function of antigen-presenting cells (APCs). In this study we found that when alpha interferon (IFN-α) is used as an inductor of monocyte differentiation, M. tuberculosis inhibits the generation of DCs, forcing the generation of immunoprivileged macrophage-like cells instead. Cells derived from M. tuberculosis-infected monocyte-derived macrophages (M. tuberculosis-infected MoMφ) retained CD14 without acquiring CD1 molecules and partially expressed B7.2 but did not up-regulate B7.1 and major histocompatibility complex (MHC) class I and II molecules. They synthesized tumor necrosis factor alpha and interleukin-10 (IL-10) but not IL-12. They also showed a reduced ability to induce proliferation and functional polarization of allogeneic T lymphocytes. Thus, in the presence of IFN-α, M. tuberculosis may hamper the renewal of potent APCs, such as DCs, generating a safe habitat for intracellular growth. M. tuberculosis-infected MoMφ, in fact, showed reduced expression of both signal 1 (CD1, MHC classes I and II) and signal 2 (B7.1 and B7.2), which are essential for mycobacterium-specific T-lymphocyte priming and/or activation. These data further suggest that M. tuberculosis has the ability to specifically interfere with monocyte differentiation. This ability may represent an effective M. tuberculosis strategy for eluding immune surveillance and persisting in the host.


2000 ◽  
Vol 68 (12) ◽  
pp. 6883-6890 ◽  
Author(s):  
Shoutaro Tsuji ◽  
Misako Matsumoto ◽  
Osamu Takeuchi ◽  
Shizuo Akira ◽  
Ichiro Azuma ◽  
...  

ABSTRACT The constituents of mycobacteria are an effective immune adjuvant, as observed with complete Freund's adjuvant. In this study, we demonstrated that the cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin (BCG-CWS), a purified noninfectious material consisting of peptidoglycan, arabinogalactan, and mycolic acids, induces maturation of human dendritic cells (DC). Surface expression of CD40, CD80, CD83, and CD86 was increased by BCG-CWS on human immature DC, and the effect was similar to those of interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), heat-killed BCG, and viable BCG. BCG-CWS induced the secretion of TNF-α, IL-6, and IL-12 p40. CD83 expression was increased by a soluble factor secreted from BCG-CWS-treated DC and was completely inhibited by monoclonal antibodies against TNF-α. BCG-CWS-treated DC stimulated extensive allogeneic mixed lymphocyte reactions. The level of TNF-α secreted through BCG-CWS was partially suppressed in murine macrophages with no Toll-like receptor 2 (TLR 2) or TLR4 and was completely lost in TLR2 and TLR4 double-deficient macrophages. These results suggest that the BCG-CWS induces TNF-α secretion from DC via TLR2 and TLR4 and that the secreted TNF-α induces the maturation of DC per se.


2006 ◽  
Vol 74 (6) ◽  
pp. 3296-3304 ◽  
Author(s):  
Elena Giacomini ◽  
Ambar Sotolongo ◽  
Elisabetta Iona ◽  
Martina Severa ◽  
Maria Elena Remoli ◽  
...  

ABSTRACT The Mycobacterium tuberculosis genome encodes 13 sigma factors. We have previously shown that mutations in some of these transcriptional activators render M. tuberculosis sensitive to various environmental stresses and can attenuate the virulence phenotype. In this work, we focused on extracytoplasmic factor σE and studied the effects induced by the deletion of its structural gene (sigE) in the infection of human monocyte-derived dendritic cells (MDDC). We found that the wild-type M. tuberculosis strain (H37Rv), the sigE mutant (ST28), and the complemented strain (ST29) were able to infect dendritic cells (DC) to similar extents, although at 4 days postinfection a reduced ability to grow inside MDDC was observed for the sigE mutant ST28. After mycobacterium capture, the majority of MDDC underwent full maturation and expressed both inflammatory cytokines, such as tumor necrosis factor alpha, and the regulatory cytokines interleukin-12 (IL-12), IL-18, and beta interferon (IFN-β). Conversely, a higher level of production of IL-10 was observed in ST28-infected MDDC compared to H37Rv- or ST29-infected cell results. However, in spite of the presence of IL-10, supernatants from ST28-infected DC induced IFN-γ production by T cells similarly to those from H37Rv-infected DC culture. On the other hand, IL-10 impaired CXCL10 production in sigE mutant-infected DC and, indeed, its neutralization restored CXCL10 secretion. In line with these results, supernatants from ST28-infected cells showed a decreased capability to recruit CXCR3+ CD4+ T cells compared to those obtained from H37Rv-infected DC culture. Thus, our findings suggest that the sigE mutant-induced secretion of IL-10 inhibits CXCL10 expression and, in turn, the recruitment of activated-effector cells involved in the formation of granulomas.


2011 ◽  
Vol 63 (2) ◽  
pp. 353-364
Author(s):  
Z. Stojic-Vukanic ◽  
M. Colic ◽  
A. Backovic ◽  
J. Antic-Stankovic ◽  
B. Bufan ◽  
...  

Leflunomide is an immunosuppressive drug effective in experimental models of transplantation and autoimmune diseases and in the treatment of active rheumatoid arthritis (RA). Having in mind that it has been shown that some other immunosuppressive drugs (glucocorticoids, mycophenolate mofetil, sirolimus etc.) impair dendritic cell (DC) phenotype and function, we investigated the effect of A77 1726, an active metabolite of leflunomide, on the differentiation and function of human monocyte-derived dendritic cells (MDDC) in vitro. Immature MDDC were generated by cultivating monocytes in medium supplemented with GM-CSF and IL-4. To induce maturation, immature MDDC were cultured for 2 additional days with LPS. A77 1726 (100 ?M) was added at the beginning of cultivation. Flow cytometric analysis showed that MDDC differentiated in the presence of A77 1726 exhibited an altered phenotype, with a down-regulated surface expression of CD80, CD86, CD54 and CD40 molecules. Furthermore, the continuous presence of A77 1726 during differentiation and maturation prevented successful maturation, judging by the decreased expression of maturation marker CD83, costimulatory and adhesive molecules on A77 1726-treated mature MDDC. In addition, A77 1726-pretreated MDDC exhibited a poor stimulatory capacity of the allogeneic T cells and a low production of IL-10 and IL-18. These data suggest that leflunomide impairs the differentiation, maturation and function of human MDDC in vitro, which is an additional mechanism of its immunosuppressive effect.


2004 ◽  
Vol 13 (4) ◽  
pp. 241-246 ◽  
Author(s):  
Tae-Hyung Han ◽  
Soo-Yeon Lee ◽  
Jung-Eun Kwon ◽  
In-Suk Kwak ◽  
Kwang-Min Kim

ESCHARECTOMY has been shown to improve the survival rates and the outcomes in burns. This observational study was conducted to assess the role of escharectomy on the inflammatory mediators in major burns. Seventeen ASA physical status II or status III adult surviving major burn patients were recruited. When the escharectomy was scheduled, a series of blood samples was obtained at −3 and −1 days preoperation, and +1 and +3 postoperation. The changing levels of endotoxin, cytokines, and adhesion molecules were measured with a quantitative sandwich immunoassay. Extensive escharectomy did not appear to have any significant impact on the levels of tumor necrosis factor alpha, interleukin-10, soluble intracellular adhesion molecule-1 and soluble vascular adhesion molecule-1. Meanwhile, endotoxin and E-selectin were significantly decreased after escharectomy. Escharectomy appeared to have a limited immunomodulatory effect on the inflammatory mediators in systemic inflammatory responses induced by major burns. This is probably related to the timing and extent of surgery, and the complex nature of burn-related inflammation.


2007 ◽  
Vol 75 (11) ◽  
pp. 5148-5157 ◽  
Author(s):  
Laetitia Breuilh ◽  
François Vanhoutte ◽  
Josette Fontaine ◽  
Caroline M. W. van Stijn ◽  
Isabelle Tillie-Leblond ◽  
...  

ABSTRACT Galectin-3 (Gal-3) is a multifunctional β-galactoside-binding lectin that senses self-derived and microbial glycoconjugates. Although Gal-3 is important in immune reactions and host defense in some experimental models, the function of Gal-3 during helminthic diseases (e.g., schistosomiasis) is still elusive. We show that, compared to wild-type Schistosoma mansoni-infected mice, infected Gal-3−/− mice have a reduced number of T and B lymphocytes in the spleen, develop reduced liver granulomas at 7 weeks (acute phase) and 14 weeks (chronic phase) postinfection, and mount a biased cellular and humoral Th1 response. In an attempt to understand this latter phenomenon, we studied the role of endogenous Gal-3 in dendritic cells (DCs), the most potent antigen-presenting cells, both in vitro and in vivo. Although Gal-3 deficiency in DCs does not impact their differentiation and maturation processes, it greatly influences the strength (but not the nature) of the adaptive immune response that they trigger, suggesting that Gal-3 deficiency in some other cell types may be important during murine schistosomiasis. As a whole, this study implies that Gal-3 is a modulator of the immune/inflammatory responses during helminthic infection and reveals for the first time that Gal-3 expression in DCs is pivotal to control the magnitude of T-lymphocyte priming.


Sign in / Sign up

Export Citation Format

Share Document