scholarly journals Inhibitor of Hyaluronic Acid Synthesis 4-Methylumbelliferone as an Anti-Inflammatory Modulator of LPS-Mediated Astrocyte Responses

2020 ◽  
Vol 21 (21) ◽  
pp. 8203 ◽  
Author(s):  
Dmitry V. Chistyakov ◽  
Arina I. Nikolskaya ◽  
Sergei V. Goriainov ◽  
Alina A. Astakhova ◽  
Marina G. Sergeeva

Astrocytes are glial cells that play an important role in neuroinflammation. Astrocytes respond to many pro-inflammatory stimuli, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4). Regulatory specificities of inflammatory signaling pathways are still largely unknown due to the ectodermal origin of astrocytes. Recently, we have shown that hyaluronic acid (HA) may form part of astrocyte inflammatory responses. Therefore, we tested 4-methylumbelliferone (4-MU), a specific inhibitor of HA synthesis, as a possible regulator of LPS-mediated responses. Rat primary astrocytes were treated with LPS with and without 4-MU and gene expression levels of inflammatory (interleukins 1β, (IL-1β), 6, (IL-6), tumor necrosis factor alpha TNFα,) and resolution interleukin 10 (IL-10) markers were evaluated via real-time PCR and western blot. The release of cytokines and HA was determined by ELISA. Oxylipin profiles were measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Our data show that 4-MU (i) has anti-inflammatory effects in the course of TLR4 activation, decreasing the cytokines level TNFα, IL-6 and IL-1β and increasing IL-10, (ii) downregulates prostaglandin synthesis but not via cyclooxygenases COX-1 and COX-2 pathways, (iii) modulates HA synthesis and decreases LPS-induced HA synthase mRNA expression (HAS-1, HAS-2) but does not have an influence on HAS-3, HYAL1 and HYAL2 mRNAs; (iv) the effects of 4-MU are predominantly revealed via JNK but not p38, ERK mitogen-activated protein kinases (MAPKs) or nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathways. For the first time, it is shown that 4-MU possesses the useful potential to regulate an inflammatory astrocyte response.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 143 ◽  
Author(s):  
Jingnan Zhao

Gold nanocages (AuNCs) are biocompatible and porous nanogold particles that have been widely used in biomedical fields. In this study, hyaluronic acid (HA) and peptide- modified gold nanocages (HA-AuNCs/T/P) loaded with 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) were prepared to investigate their potential for combating inflammation. TPCA-1 was released from AuNCs, intracellularly when HA was hydrolyzed by hyaluronidase. HA-AuNCs/T/P show a much higher intracellular uptake than AuNCs/T/P, and exhibit a much higher efficacy on the suppression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) than free TPCA-1, suggesting great improvement to the anti-inflammatory efficacy of TPCA-1 through the application of AuNCs. HA-AuNCs/T/P can also reduce the production of reactive oxygen species in inflammatory cells. This study suggests that HA-AuNCs/T/P may be potential agents for anti-inflammatory treatment, and are worthy of further investigation.


2010 ◽  
Vol 78 (11) ◽  
pp. 4763-4772 ◽  
Author(s):  
Raquel M. Gonçalves ◽  
Karina C. Salmazi ◽  
Bianca A. N. Santos ◽  
Melissa S. Bastos ◽  
Sandra C. Rocha ◽  
...  

ABSTRACT Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4+ CD25+ Foxp3+ Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123+), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-α) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and long-lasting protective immunity to malaria.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Małgorzata Chmielewska-Krzesińska ◽  
Krzysztof Wąsowicz

Abstract Introduction Ozone is not harmful itself; however, it directly oxidises biomolecules and produces radical-dependent cytotoxicity. Exposure to ozone is by inhalation and therefore the lungs develop the main anti-inflammatory response, while ozone has an indirect impact on the other organs. This study investigated the local and systemic effects of the ozone-associated inflammatory response. Material and Methods Three groups each of 5 Wistar Han rats aged 6 months were exposed for 2h to airborne ozone at 0.5 ppm and a fourth identical group were unexposed controls. Sacrifice was at 3h after exposure for control rats and one experimental group and at 24 h and 48 h for the others. Lung and liver samples were evaluated for changes in expression of transforming growth factor beta 1, anti-inflammatory interleukin 10, pro-inflammatory tumour necrosis factor alpha and interleukin 1 beta and two nuclear factor kappa-light-chain-enhancer of B cells subunit genes. Total RNA was isolated from the samples in spin columns and cDNA was synthesised in an RT-PCR. Expression levels were compared to those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and analysed statistically. Results All variables changed non-linearly over time comparing experimental groups to the control. Conspicuous expression changes in the subunit genes and cytokines were observed in both evaluated organs. Conclusion Locally and systemically, inflammation responses to ozone inhalation include regulation of certain genes’ expression. The mechanisms are unalike in lungs and liver but ozone exerts a similar effect in both organs. A broader range of variables influential on ozone response should be studied in the future.


2020 ◽  
Vol 21 (24) ◽  
pp. 9577
Author(s):  
Dmitry V. Chistyakov ◽  
Alina A. Astakhova ◽  
Sergei V. Goriainov ◽  
Marina G. Sergeeva

Neuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation. Astrocytes were exposed to LPS alone or in combination with the PPAR ligands: PPARα (fenofibrate, GW6471); PPARβ (GW501516, GSK0660); PPARγ (rosiglitazone, GW9662). We detected 28 oxylipins with mass spectrometry (UPLC-MS/MS), classified according to their metabolic pathways: cyclooxygenase (COX), cytochrome P450 monooxygenases (CYP), lipoxygenase (LOX) and PUFAs: arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA). All tested PPAR ligands decrease COX-derived oxylipins; both PPARβ ligands possessed the strongest effect. The PPARβ agonist, GW501516 is a strong inducer of pro-resolution substances, derivatives of DHA: 4-HDoHE, 11-HDoHE, 17-HDoHE. All tested PPAR ligands decreased the release of the proinflammatory cytokine, TNFα. The PPARβ agonist GW501516 and the PPARγ agonist, rosiglitazone induced the IL-10 release of the anti-inflammatory cytokine, IL-10; the cytokine index, (IL-10/TNFα) was more for GW501516. The PPARβ ligands, GW501516 and GSK0660, are also the strongest inhibitors of LPS-induced phosphorylation of p38, JNK, ERK MAPKs. Overall, our data revealed that the PPARβ ligands are a potential pro-resolution and anti-inflammatory drug for targeting glia-mediated neuroinflammation.


2008 ◽  
Vol 76 (9) ◽  
pp. 4322-4331 ◽  
Author(s):  
Abraham Guerrero ◽  
Bettina C. Fries

ABSTRACT Cryptococcus neoformans is an encapsulated opportunistic organism that can undergo phenotypic switching. In this process, the parent smooth colony (SM) switches to a more virulent mucoid colony (MC) variant. The host responses mounted against the SM and MC variants differ, and lower tissue interleukin 10 (IL-10) levels are consistently observed in lungs of MC-infected C57BL/6 and BALB/c mice. This suggested different roles of this cytokine in SM and MC infections. The objective of this study was to compare survival rates and characterize the host responses of SM- and MC-infected IL-10-depleted (IL-10−/−) mice, which exhibit a Th1-polarized immune response and are considered resistant hosts. As expected, SM-infected IL-10−/− mice survived longer than wild-type mice, whereas MC-infected IL-10−/− mice did not exhibit a survival benefit. Consistent with this observation, we demonstrated marked differences in the inflammatory responses of SM- and MC-infected IL-10−/− and wild-type mice. This included a more Th1-polarized inflammatory response with enhanced recruitment of macrophages and natural killer and CD8 cells in MC- than in SM-infected IL-10−/− and wild-type mice. In contrast, both SM-infected IL-10−/− and wild-type mice exhibited higher recruitment of CD4 cells, consistent with enhanced survival and differences in recruitment and Th1/Th2 polarization. Lung tissue levels of IL-21, IL-6, IL-4, transforming growth factor beta, IL-12, and gamma interferon were higher in MC-infected IL-10−/− and wild-type mice than in SM-infected mice, whereas tumor necrosis factor alpha levels were higher in SM-infected IL-10−/− mice. In conclusion, the MC variant elicits an excessive inflammatory response in a Th1-polarized host environment, and therefore, the outcome is negatively affected by the absence of IL-10.


2019 ◽  
Vol 65 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Hong Xiao Cui ◽  
Xiu Rong Xu

Rabbit is susceptible to intestinal infection, which often results in severe inflammatory response. To investigate whether the special community structure of rabbit intestinal bacteria contributes to this susceptibility, we compared the inflammatory responses of isolated rabbit crypt and villus to heat-treated total bacteria in pig, chicken, and rabbit ileal contents. The dominant phylum in pig and chicken ileum was Firmicutes, while Bacteroidetes was dominant in rabbit ileum. The intestinal bacteria from rabbit induced higher expression of toll-like receptor 4 (TLR4) in rabbit crypt and villus (P < 0.05). TLR2 and TLR3 expression was obviously stimulated by chicken and pig intestinal bacteria (P < 0.05) but not by those of rabbit. The ileal bacteria from those three animals all increased the expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in crypts and villus (P < 0.05). Chicken and pig ileal bacteria also stimulated the expression of anti-inflammatory factors interferon beta (IFN-β) and IL-10 (P < 0.05), while those of rabbit did not (P > 0.05). In conclusion, a higher abundance of Gram-negative bacteria in rabbit ileum did not lead to more expressive pro-inflammatory cytokines in isolated rabbit crypt and villus, but a higher percentage of Lactobacillus in chicken ileum might result in more expressive anti-inflammatory factors.


2016 ◽  
Vol 90 (12) ◽  
pp. 5549-5560 ◽  
Author(s):  
Sonya A. MacParland ◽  
Xue-Zhong Ma ◽  
Limin Chen ◽  
Ramzi Khattar ◽  
Vera Cherepanov ◽  
...  

ABSTRACTInflammation may be maladaptive to the control of viral infection when it impairs interferon (IFN) responses, enhancing viral replication and spread. Dysregulated immunity as a result of inappropriate innate inflammatory responses is a hallmark of chronic viral infections such as, hepatitis B virus and hepatitis C virus (HCV). Previous studies from our laboratory have shown that expression of an IFN-stimulated gene (ISG), ubiquitin-like protease (USP)18 is upregulated in chronic HCV infection, leading to impaired hepatocyte responses to IFN-α. We examined the ability of inflammatory stimuli, including tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), interleukin-6 (IL-6) and IL-10 to upregulate hepatocyte USP18 expression and blunt the IFN-α response. Human hepatoma cells and primary murine hepatocytes were treated with TNF-α/LPS/IL-6/IL-10 and USP18, phosphorylated (p)-STAT1 and myxovirus (influenza virus) resistance 1 (Mx1) expression was determined. Treatment of Huh7.5 cells and primary murine hepatocytes with LPS and TNF-α, but not IL-6 or IL-10, led to upregulated USP18 expression and induced an IFN-α refractory state, which was reversed by USP18 knockdown. Liver inflammation was induced in vivo using a murine model of hepatic ischemia/reperfusion injury. Hepatic ischemia/reperfusion injury led to an induction of USP18 expression in liver tissue and promotion of lymphocytic choriomeningitis replication. These data demonstrate that certain inflammatory stimuli (TNF-α and LPS) but not others (IL-6 and IL-10) target USP18 expression and thus inhibit IFN signaling. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with USP18 representing a potential target for intervention in various inflammatory states.IMPORTANCEInflammation may prevent the control of viral infection when it impairs the innate immune response, enhancing viral replication and spread. Blunted immunity as a result of inappropriate innate inflammatory responses is a common characteristic of chronic viral infections. Previous studies have shown that expression of certain interferon-stimulated genes is upregulated in chronic HCV infection, leading to impaired hepatocyte responses. In this study, we show that multiple inflammatory stimuli can modulate interferon stimulated gene expression and thus inhibit hepatocyte interferon signaling via USP18 induction. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with the induction of USP18 representing a potential target for intervention in various inflammatory states.


2017 ◽  
Vol 15 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Ala’a Al-Bakheit ◽  
Saeid Abu-Romman ◽  
Ahmad Sharab ◽  
Mohammad Al Shhab

Varthemia iphionoides is a Jordanian medicinal plant with several health-promoting properties, including antibacterial, antioxidant and anticancer activities. However, its anti-inflammatory properties have been poorly investigated up to date. The current study aimed to investigate the anti-inflammatory effect of V. iphionoides by measuring the production of interleukin-6 in response to a pro-inflammatory stimulus (bacterial lipopolysaccharide) in in vitro cell models of human MRC-5 and PC3 cells. We observed a significant reduction in lipopolysaccharide-induced interleukin-6 release in response to V. iphionoides (125 µg/mL) in both non-cancerous fibroblast MRC-5 and prostate cancerous PC3 cells. However, the anti-inflammatory effect of this medicinal plant was stronger when MRC-5 cells were treated with an aqueous extract, while the methanolic extract was more potent in PC3 cells. The effect of V. iphionoides in reducing interleukin-6 production was not due to its cytotoxicity, and future studies are required to elucidate the mechanisms of action by which this medicinal plant modulates inflammatory responses. In conclusion, the results of our study represent the first report of the potential protective effect of water and methanolic extracts of V. iphionoides against pro-inflammatory stimuli in fibroblasts and cancer cells of human origin, and it is critically important to identify the phytochemical compounds responsible for this effect.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chien-Chao Chiu ◽  
Yung-Hao Ching ◽  
Yu-Chih Wang ◽  
Ju-Yun Liu ◽  
Yen-Peng Li ◽  
...  

Ulcerative colitis is inflammatory conditions of the colon caused by interplay of genetic and environmental factors. Previous studies indicated that the gut microflora may be involved in the colonic inflammation.Bacteroides fragilis(BF) is a Gram-negative anaerobe belonging to the colonic symbiotic. We aimed to investigate the protective role ofBFin a colitis model induced in germ-free (GF) mice by dextran sulfate sodium (DSS). GF C57BL/6JNarl mice were colonized withBFfor 28 days before acute colitis was induced by DSS.BFcolonization significantly increased animal survival by 40%, with less reduction in colon length, and decreased infiltration of inflammatory cells (macrophages and neutrophils) in colon mucosa following challenge with DSS. In addition,BFcould enhance the mRNA expression of anti-inflammatory-related cytokine such as interleukin 10 (IL-10) with polymorphism cytokineIL-17and diminish that of proinflammatory-related tumor necrosis factorαwith inducible nitric oxide synthase in the ulcerated colon. Myeloperoxidase activity was also decreased inBF-DSS mice. Taking these together, theBFcolonization significantly ameliorated DSS-induced colitis by suppressing the activity of inflammatory-related molecules and inducing the production of anti-inflammatory cytokines.BFmay play an important role in maintaining intestinal immune system homeostasis and regulate inflammatory responses.


Perfusion ◽  
2000 ◽  
Vol 15 (6) ◽  
pp. 501-505 ◽  
Author(s):  
Roldan Fernando ◽  
Richard Chan

With the advent of off-pump coronary bypass surgery, there is increasing demand for research in attenuating the deleterious effects of cardiopulmonary bypass (CPB). An improved understanding of the systemic inflammatory response syndrome (SIRS) has distinguished which areas of components have the most adverse effects and which are, in fact, anti-inflammatory. This classification of inflammatory components allows strategic treatment for those likely to cause the most clinically significant ‘effect’, suitably termed ‘effectors’. This article will identify current methods in treating ‘effectors’, as well as those components having anti-inflammatory effects. This article selectively features certain inflammatory components by: (1) grouping them as being ‘mediators’ or ‘effectors’; (2) relating them to interleukin-10 (IL-10) and treatments potentiating anti-inflammatory effects; (3) summarizing their mechanisms of action; (4) recognizing the time periods during bypass exhibiting peak levels; and (5) investigating current treatment methods and identifying their significance to ‘effectors’. A literature search in MEDLINE was performed, featuring articles of the English-language within the past 5 years. Because of the characteristic of having interlinked multi-component cascades, it is evident that treating SIRS with a one-dimensional method would be inadequate. This article not only confirms the importance of a multi-factorial therapeutic approach, but also targets the inflammatory components having the highest potential for causing direct tissue damage, known as ‘effectors’. In addition, previous studies have found IL-10 to have ‘regulatory effects’ during periods of excessive pro-inflammatory stimuli. These findings may arouse new ideas in exploring the area of anti-inflammatory cytokines. In fact, future treatments may suggest a new classification featuring ‘mediators’, ‘effectors’, and ‘regulators’.


Sign in / Sign up

Export Citation Format

Share Document