scholarly journals Helicobacter hepaticus Triggers Colitis in Specific-Pathogen-Free Interleukin-10 (IL-10)-Deficient Mice through an IL-12- and Gamma Interferon-Dependent Mechanism

1998 ◽  
Vol 66 (11) ◽  
pp. 5157-5166 ◽  
Author(s):  
Marika C. Kullberg ◽  
Jerrold M. Ward ◽  
Peter L. Gorelick ◽  
Patricia Caspar ◽  
Sara Hieny ◽  
...  

ABSTRACT Mice rendered deficient in interleukin-10 (IL-10) by gene targeting (IL-10−/− mice) develop chronic enterocolitis resembling human inflammatory bowel disease (IBD) when maintained in conventional animal facilities. However, they display a minimal and delayed intestinal inflammatory response when reared under specific-pathogen-free (SPF) conditions, suggesting the involvement of a microbial component in pathogenesis. We show here that experimental infection with a single bacterial agent, Helicobacter hepaticus, induces chronic colitis in SPF-reared IL-10−/− mice and that the disease is accompanied by a type 1 cytokine response (gamma interferon [IFN-γ], tumor necrosis factor alpha, and nitric oxide) detected by restimulation of spleen and mesenteric lymph node cells with a soluble H. hepaticusantigen (Ag) preparation. In contrast, wild-type (WT) animals infected with the same bacteria did not develop disease and produced IL-10 as the dominant cytokine in response to Helicobacter Ag. Strong H. hepaticus-reactive antibody responses as measured by Ag-specific total immunoglobulin G (IgG), IgG1, IgG2a, IgG2b, IgG3, and IgA were observed in both WT and IL-10−/− mice. In vivo neutralization of IFN-γ or IL-12 resulted in a significant reduction of intestinal inflammation in H. hepaticus-infected IL-10−/− mice, suggesting an important role for these cytokines in the development of colitis in the model. Taken together, these microbial reconstitution experiments formally establish that a defined bacterial agent can serve as the immunological target in the development of large bowel inflammation in IL-10−/− mice and argue that in nonimmunocompromised hosts IL-10 stimulated in response to intestinal flora is important in preventing IBD.

2004 ◽  
Vol 72 (2) ◽  
pp. 988-995 ◽  
Author(s):  
Hai Qi ◽  
Jiaxiang Ji ◽  
Nanchaya Wanasen ◽  
Lynn Soong

ABSTRACT During Leishmania major infection in mice, gamma interferon (IFN-γ) plays an essential role in controlling parasite growth and disease progression. In studies designed to ascertain the role of IFN-γ in Leishmania amazonensis infection, we were surprised to find that IFN-γ could promote L. amazonensis amastigote replication in macrophages (MΦs), although it activated MΦs to kill promastigotes. The replication-promoting effect of IFN-γ on amastigotes was independent of the source and genetic background of MΦs, was apparently not affected by surface opsonization of amastigotes, was not mediated by interleukin-10 or transforming growth factor β, and was observed at different temperatures. Consistent with the different fates of promastigotes and amastigotes in IFN-γ-stimulated MΦs, L. amazonensis-specific Th1 transfer helped recipient mice control L. amazonensis infection established by promastigotes but not L. amazonensis infection established by amastigotes. On the other hand, IFN-γ could stimulate MΦs to limit amastigote replication when it was coupled with lipopolysaccharides but not when it was coupled with tumor necrosis factor alpha. Thus, IFN-γ may play a bidirectional role at the level of parasite-MΦ interactions; when it is optimally coupled with other factors, it has a protective effect against infection, and in the absence of such synergy it promotes amastigote growth. These results reveal a quite unexpected aspect of the L. amazonensis parasite and have important implications for understanding the pathogenesis of the disease and for developing vaccines and immunotherapies.


2001 ◽  
Vol 69 (12) ◽  
pp. 7453-7460 ◽  
Author(s):  
M. M. L. Pompeu ◽  
C. Brodskyn ◽  
M. J. Teixeira ◽  
J. Clarêncio ◽  
J. Van Weyenberg ◽  
...  

ABSTRACT The initial encounter of Leishmania cells and cells from the immune system is fundamentally important in the outcome of infection and determines disease development or resistance. We evaluated the anti-Leishmania amazonensis response of naive volunteers by using an in vitro priming (IVP) system and comparing the responses following in vivo vaccination against the same parasite. In vitro stimulation allowed us to distinguish two groups of individuals, those who produced small amounts of gamma interferon (IFN-γ) (n = 16) (low producers) and those who produced large amounts of this cytokine (n = 16) (high producers). IFN-γ production was proportional to tumor necrosis factor alpha and interleukin 10 (IL-10) levels but did not correlate with IL-5 production. Volunteers who produced small amounts of IFN-γ in vitro remained low producers 40 days after vaccination, whereas high producers exhibited increased IFN-γ production. However, 6 months after vaccination, all individuals tested produced similarly high levels of IFN-γ upon stimulation of their peripheral blood mononuclear cells with Leishmania promastigotes, indicating that low in vitro producers respond slowly in vivo to vaccination. In high IFN-γ producers there was an increased frequency of activated CD8+ T cells both in vitro and in vivo compared to the frequency in low producers, and such cells were positive for IFN-γ as determined by intracellular staining. Such findings suggest that IVP responses can be used to predict the pace of postvaccination responses of test volunteers. Although all vaccinated individuals eventually have a potent anti-Leishmania cell-mediated immunity (CMI) response, a delay in mounting the CMI response may influence resistance against leishmaniasis.


2001 ◽  
Vol 69 (7) ◽  
pp. 4232-4241 ◽  
Author(s):  
Marika C. Kullberg ◽  
Antonio Gigliotti Rothfuchs ◽  
Dragana Jankovic ◽  
Patricia Caspar ◽  
Thomas A. Wynn ◽  
...  

ABSTRACT We have previously shown that specific-pathogen-free interleukin-10 (IL-10)-deficient (IL-10 KO) mice reconstituted withHelicobacter hepaticus develop severe colitis associated with a Th1-type cytokine response. In the present study, we formally demonstrate that IL-12 is crucial for disease induction, because mice deficient for both IL-10 and IL-12 p40 show no intestinal pathology following H. hepaticus infection. By using monoclonal antibodies (MAbs) to IL-12, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α), we have further analyzed the role of these cytokines in the maintenance of the Th1 response and inflammation in IL-10 KO mice with established H. hepaticus-induced colitis. Treatment of infected colitic IL-10 KO mice with anti-IL-12 p40 resulted in markedly reduced intestinal inflammation, colonic IFN-γ, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA levels, and H. hepaticus-specific IFN-γ secretion by mesenteric lymph node (MLN) cells compared to the findings in control MAb-treated mice. Moreover, the diminished pathology was associated with decreased numbers of colonic CD3+ T cells and significantly reduced frequencies ofHelicobacter-reactive CD4+ Th1 cells in MLN. In contrast, anti-IFN-γ and/or anti-TNF-α had no effect on intestinal inflammation in IL-10 KO mice with established colitis. Using IL-10/IFN-γ double-deficient mice, we further show that IFN-γ is not required for the development of colitis follwing H. hepaticus infection. MLN cells from infected IL-10/IFN-γ KO animals secreted elevated amounts of IL-12 and TNF-α following bacterial antigen stimulation, indicating alternative pathways of disease induction. Taken together, our results demonstrate a crucial role for IL-12 in both inducing and sustaining intestinal inflammation through recruitment and maintenance of a pool of pathogenic Th1 cells.


2001 ◽  
Vol 8 (2) ◽  
pp. 402-408 ◽  
Author(s):  
Macarena Beigier-Bompadre ◽  
Paula Barrionuevo ◽  
Fernanda Alves-Rosa ◽  
Carolina J. Rubel ◽  
Marina S. Palermo ◽  
...  

ABSTRACT Three different classes of receptors for the Fc portion of immunoglobulin G (FcγRs), FcγRI, FcγRII, and FcγRIII, have been identified on human leukocytes. One of them, FcγRI, is a high-affinity receptor capable of induction of functions that include phagocytosis, respiratory burst, antibody-dependent cell-mediated cytotoxicity (ADCC), and secretion of cytokines. This receptor is expressed on mononuclear phagocytes, and this expression is regulated by cytokines and hormones such as gamma interferon (IFN-γ), IFN-β, interleukin-10 (IL-10), and glucocorticoids. We have recently demonstrated that the chemotactic peptideN-formyl-methionyl-leucyl-phenylalanine (FMLP) is capable of inducing a time-dependent downregulation of both FcγRIIIB and FcγRII in human neutrophils, altering FcγR-dependent functions. Considering the biological relevance of the regulation of FcγRI, we investigated the effect of FMLP on the overexpression of FcγRI induced by both IFN-γ and IL-10 on human monocytes. We demonstrate that FMLP significantly abrogated IFN-γ- and IL-10-induced FcγRI expression, although its basal level of expression was not altered. However, other IFN-γ-mediated effects such as the overexpression of the major histocompatibility complex class II antigens and the enhancement of lipopolysaccharide-induced secretion of tumor necrosis factor alpha were not affected by FMLP treatment. The formyl peptide completely inhibited the IFN-γ- and IL-10-induced enhancement of ADCC and phagocytosis carried out by adherent cells. The inhibitory effect of FMLP on FcγRI upregulation could exert an important regulatory effect during the evolution of bacterial infections.


2001 ◽  
Vol 69 (5) ◽  
pp. 2847-2852 ◽  
Author(s):  
Julia Y. Lee ◽  
Kathleen E. Sullivan

ABSTRACT Lipopolysaccharide (LPS) is a very potent inducer of tumor necrosis factor alpha (TNF-α) expression from monocytes and macrophages. Another inflammatory cytokine, gamma interferon (IFN-γ), can potentiate the effects of LPS, but the mechanism is not thoroughly understood. Previous reports emphasized the ability of IFN-γ to upregulate CD14 expression (the receptor for LPS), and nearly all studies have utilized sequential stimulation with IFN-γ followed by LPS to exploit this phenomenon. This study demonstrates that IFN-γ can upregulate the effect of LPS at the level of transcription. Human monoblastic Mono-Mac-6 cells produced up to threefold-greater levels of TNF-α when simultaneously stimulated with LPS and IFN-γ compared to treatment with LPS alone. RNase protection studies showed a similar increase in RNA beginning as early as within 30 min. The synthesis of TNF-α mRNA in IFN-γ- and LPS-treated Mono-Mac-6 cells was also temporally prolonged even though the message turnover rate was identical to that seen in LPS stimulated cells. The modulatory effect of IFN-γ may be mediated by Jak2.


1999 ◽  
Vol 67 (9) ◽  
pp. 4435-4442 ◽  
Author(s):  
Ching Li ◽  
Inés Corraliza ◽  
Jean Langhorne

ABSTRACT Infection of interleukin-10 (IL-10)-nonexpressing (IL-10−/−) mice with Plasmodium chabaudi chabaudi (AS) leads to exacerbated pathology in female mice and death in a proportion of them. Hypoglycemia, hypothermia, and loss in body weight were significantly greater in female IL-10−/−mice than in male knockout mice and all wild-type (WT) mice during the acute phase of infection. At this time, both female and male IL-10−/− mice produced more gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-12p40 mRNA than their respective WT counterparts. Inactivation of IFN-γ in IL-10−/− mice by the injection of anti-IFN-γ antibodies or by the generation of IL-10−/− IFN-γ receptor−/− double-knockout mice resulted in reduced mortality but did not affect body weight, temperature, or blood glucose levels. The data suggest that IFN-γ-independent pathways may be responsible for these pathological features of P. chabaudimalaria and may be due to direct stimulation of TNF-α by the parasite. Since male and female knockout mice both produce more inflammatory cytokines than their WT counterparts, it is likely that the mortality seen in females is due to the nature or magnitude of the response to these cytokines rather than the amount of IFN-γ or TNF-α produced.


2004 ◽  
Vol 72 (4) ◽  
pp. 1974-1982 ◽  
Author(s):  
M. S. Khalifeh ◽  
J. R. Stabel

ABSTRACT Gamma interferon (IFN-γ) plays a significant role in the control of mycobacterial infections, including Mycobacterium avium subsp. paratuberculosis. However, the contribution of other immunoregulatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor β (TGF-β), in Johne's disease has not been investigated as yet. In this study, we examined the effects of in vivo and in vitro infection with M. avium subsp. paratuberculosis on the production of IFN-γ, IL-10, and TGF-β by peripheral blood mononuclear cells (PBMC). We also examined the effects of exogenous IFN-γ, IL-10, and TGF-β on M. avium subsp. paratuberculosis survival in the cell cultures. PBMC obtained from naturally infected cows, regardless of their disease status, specifically upregulated IL-10 and TGF-β in culture supernatants in response to stimulation with live M. avium subsp. paratuberculosis. Nonstimulated PBMC recovered from subclinically infected animals secreted the lowest levels of TGF-β, but after stimulation with live M. avium subsp. paratuberculosis, TGF-β levels in the culture supernatants increased to levels similar to that produced by PBMC from healthy animals. The numbers of viable M. avium subsp. paratuberculosis recovered from cultures from naturally infected animals were higher than those from healthy cows after in vitro infection with M. avium subsp. paratuberculosis. The addition of exogenous IL-10 and TGF-β to PBMC isolated from healthy cows inhibited the bactericidal activity of these cells as evidenced by the increased number of viable M. avium subsp. paratuberculosis recovered from these cultures compared to cell cultures containing medium alone. These data suggest important immune regulatory roles for IL-10 and TGF-β during infection with M. avium subsp. paratuberculosis that may be directly related to their effects on macrophage activation and killing of M. avium subsp. paratuberculosis.


2005 ◽  
Vol 73 (6) ◽  
pp. 3559-3567 ◽  
Author(s):  
Zhongming Ge ◽  
Yan Feng ◽  
Mark T. Whary ◽  
Prashant R. Nambiar ◽  
Shilu Xu ◽  
...  

ABSTRACT Helicobacter hepaticus, which induces chronic hepatitis and typhlocolitis in susceptible mouse strains, produces a cytolethal distending toxin (CDT) consisting of CdtA, CdtB, and CdtC. A cdtB-deficient H. hepaticus isogenic mutant (HhcdtBm7) was generated and characterized for colonization parameters in four intestinal regions (jejunum, ileum, cecum, and colon) of outbred Swiss Webster (SW) mice. Inactivation of the cdtB gene abolished the ability of HhcdtBm7 to colonize female mice at both 8 and 16 weeks postinfection (wpi), whereas HhcdtBm7 colonized all of four intestinal regions of three of five males at 8 wpi and then was eliminated by 16 wpi. Wild-type (WT) H. hepaticus was detected in the corresponding intestinal regions of both male and female mice at 8 and 16 wpi; however, colonization levels of WT H. hepaticus in the cecum and colon of male mice were approximately 1,000-fold higher than in females (P < 0.0079) at 16 wpi. Infection with WT H. hepaticus, but not HhcdtBm7, at 8 wpi was associated with significantly increased mRNA level of ileal and cecal gamma interferon (IFN-γ) in females (P < 0.016 and 0.031 between WT H. hepaticus-infected and sham-dosed females, respectively). In contrast, the mRNA levels of IFN-γ were significantly higher in the colon (P < 0.0079) and trended to be higher in the cecum (P < 0.15) in the HhcdtBm7-colonized male mice versus the sham-dosed controls at 8 wpi. In addition, mRNA levels of ileal IFN-γ were significantly higher in the control females than males at 8 wpi (P < 0.016). There were significantly higher Th1-associated immunoglobulin G2a (IgG2a), Th2-associated IgG1 and mucosal IgA (P < 0.002, 0.002, 0.002, respectively) responses in the mice infected with WT H. hepaticus when compared to HhcdtBm7 at 16 wpi. Colonic interleukin-10 (IL-10) expressions at 16 wpi were significantly lower in both female and male mice colonized by WT H. hepaticus or in males transiently colonized through 8 wpi by HhcdtBm7 versus control mice (P < 0.0159). These lines of evidence indicate that (i) H. hepaticus CDT plays a crucial role in the persistent colonization of H. hepaticus in SW mice; (ii) SW female mice are more resistant to H. hepaticus colonization than male mice; (iii) there was persistent colonization of WT H. hepaticus in cecum, colon, and jejunum but only transient colonization of H. hepaticus in the ileum of female mice; (iv) H. hepaticus colonization was associated with down-regulation of colonic IL-10 production.


2005 ◽  
Vol 73 (5) ◽  
pp. 2709-2717 ◽  
Author(s):  
Sadako Yoshizawa ◽  
Kazuhiro Tateda ◽  
Tetsuya Matsumoto ◽  
Fumio Gondaira ◽  
Shuichi Miyazaki ◽  
...  

ABSTRACT We examined the roles of Th1-Th2 cytokine cross talk in Legionella pneumophila-infected bone marrow-derived (BM) macrophages in the presence of costimulation with interleukin-12 (IL-12) and IL-18. Treatment with gamma interferon (IFN-γ) alone or treatment with IL-12 in combination with IL-18 resulted in a 3- or 2-log reduction in bacterial numbers, respectively, in BM macrophages, whereas treatment with IL-12 or IL-18 alone had no effect. Significant amounts of IFN-γ were detected in the culture supernatants of infected macrophages stimulated with IL-12 and IL-18 in combination but not independently. Neutralization of IFN-γ by antibody completely abolished the growth inhibitory effects of IL-12 and IL-18. Interestingly, higher infectivity ratios of L. pneumophila or the addition of increasing concentrations of heat-killed bacteria (HKB) suppressed the production of IFN-γ, which resulted in the increased intracellular growth of bacteria. Significant amounts of IL-10 were detected in culture supernatants when Legionella-infected macrophages were cocultured with HKB. Furthermore, neutralization of IL-10 by antibody resulted in an increase in IFN-γ production by infected BM macrophages when cocultured with HKB. Treatment of HKB with trypsin but not polymyxin B attenuated the growth-promoting effects of HKB, suggesting the involvement of a protein component(s) in regulation of the growth of L. pneumophila. These findings demonstrate a crucial role of Th1-Th2 cross talk in L. pneumophila-infected BM macrophages. Our results also suggest that L. pneumophila modulates the cytokine balance from IFN-γ-driven Th1 to more Th2 responses, likely through the induction of IL-10 by a bacterial protein component(s). These data provide new insights not only into the cellular mechanisms of Th1-Th2 cross talk in Legionella-infected macrophages but also into the pathogenesis of L. pneumophila pneumonia in humans.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Jiao Song ◽  
Qinghe Li ◽  
Nadia Everaert ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
...  

Abstract We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)–infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P &lt; 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P &lt; 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P &lt; 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P &lt; 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.


Sign in / Sign up

Export Citation Format

Share Document