scholarly journals Roles of Innate and Adaptive Immunity in Respiratory Mycoplasmosis

1998 ◽  
Vol 66 (8) ◽  
pp. 3485-3491 ◽  
Author(s):  
Samuel C. Cartner ◽  
J. Russell Lindsey ◽  
Julie Gibbs-Erwin ◽  
Gail H. Cassell ◽  
Jerry W. Simecka

ABSTRACT Current evidence suggests that host defense in respiratory mycoplasmosis is dependent on both innate and humoral immunity. To further delineate the roles of innate and adaptive immunity in antimycoplasmal defenses, we intranasally infected C3H/HeSnJ-scid/scid (C3H-SCID), C3H/HeSnJ (C3H), C57BL/6J-scid/scid (C57-SCID), and C57BL/6N (C57BL) mice with Mycoplasma pulmonis and at 14 and 21 days postinfection performed quantitative cultures of lungs and spleens, quantification of lung lesions, and histopathologic assessments of all other major organs. We found that numbers of mycoplasmas in lungs were associated with genetic background (C3H susceptible, C57BL resistant) rather than functional state of adaptive immunity, indicating that innate immunity is the main contributor to antimycoplasmal defense of the lungs. Extrapulmonary dissemination of mycoplasmas with colonization of spleens and histologic lesions in multiple organs was a common occurrence in all mice. The absence of adaptive immune responses in severe combined immunodeficient (SCID) mice resulted in increased mycoplasmal colonization of spleens and lesions in extrapulmonary sites, particularly spleens, hearts, and joints, and also reduced lung lesion severity. The transfer of anti-M. pulmonis serum to infected C3H-SCID mice prevented extrapulmonary infection and disease, while the severity of lung lesions was restored by transfer of naive spleen cells to infected C3H-SCID mice. Collectively, our results strongly support the conclusions that innate immunity provides antimycoplasmal defense of the lungs and humoral immunity has the major role in defense against systemic dissemination of mycoplasmal infection, but cellular immune responses may be important in exacerbation of mycoplasmal lung disease.

Author(s):  
I. A. Ivanovа ◽  
A. A. Trufanova ◽  
A. V. Filippenko ◽  
I. A. Bespalova ◽  
N. D. Omelchenko

Due to the emergence of antibiotic-resistant strains of bacteria in recent years, the treatment and prevention of various infections with bacteriophages have again become an important area of research. However, when using phages for this purpose, it is necessary to take into account the immune responses of a macroorganism to their introduction. The data about impact of bacterial viruses on the innate and adaptive immunity system of mammals in available literature are few and contradictory. This issue requires further detailed study, especially in the development of new therapeutic and prophylactic biological products based on bacteriophages.


2016 ◽  
Author(s):  
Steven K. Lundy ◽  
Alison Gizinski ◽  
David A. Fox

The immune system is a complex network of cells and mediators that must balance the task of protecting the host from invasive threats. From a clinical perspective, many diseases and conditions have an obvious link to improper functioning of the immune system, and insufficient immune responses can lead to uncontrolled acute and chronic infections. The immune system may also be important in tumor surveillance and control, cardiovascular disease, health complications related to obesity, neuromuscular diseases, depression, and dementia. Thus, a working knowledge of the role of immunity in disease processes is becoming increasingly important in almost all aspects of clinical practice. This review provides an overview of the immune response and discusses immune cell populations and major branches of immunity, compartmentalization and specialized immune niches, antigen recognition in innate and adaptive immunity, immune tolerance toward self antigens, inflammation and innate immune responses, adaptive immune responses and helper T (Th) cell subsets, components of the immune response that are important targets of treatment in autoimmune diseases, mechanisms of action of biologics used to treat autoimmune diseases and their approved uses, and mechanisms of other drugs commonly used in the treatment of autoimmune diseases. Figures show the development of erythrocytes, platelets, lymphocytes, and other immune system cells originating from hematopoietic stem cells that first reside in the fetal liver and later migrate to the bone marrow, antigen–major histocompatibility complex recognition by T cell receptor control of T cell survival and activation, and Th cells as central determinants of the adaptive immune response toward different stimuli. Tables list cell populations involved in innate and adaptive immunity, pattern recognition receptors with known ligands, autoantibody-mediated human diseases: examples of pathogenic mechanisms, selected Food and Drug Administration–approved autoimmune disease indications for biologics, and mechanism of action of biologics used to treat autoimmune diseases.   This review contains 3 highly rendered figures, 5 tables, and 64 references.


2013 ◽  
Vol 2 (5) ◽  
pp. e24520 ◽  
Author(s):  
Elena Jachetti ◽  
Stefania Mazzoleni ◽  
Matteo Grioni ◽  
Alessia Ricupito ◽  
Chiara Brambillasca ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-36 ◽  
Author(s):  
Mariangela Rondanelli ◽  
Alessandra Miccono ◽  
Silvia Lamburghini ◽  
Ilaria Avanzato ◽  
Antonella Riva ◽  
...  

Maintaining a normal healthy immune defense system lowers the incidence and/or the severity of symptoms and/or the duration of common cold (CC). Physical barriers and innate and adaptive immunity have been involved during a CC episode. Vitamins C and D, zinc, and Echinacea have evidence-based efficacy on these immune system barriers. This review includes 82 eligible studies to consider the preventive role of these nutrients in immune clusters and in CC to provide advice on dosage and assumption of these nutrients. Regarding vitamin C, regular supplementation (1 to 2 g/day) has shown that vitamin C reduces the duration (in adults by 8%, in children by 14%) and the severity of CC. Considering zinc, the supplementation may shorten the duration of colds by approximately 33%. CC patients may be instructed to try zinc within 24 hours of onset of symptoms. As for vitamin D, the supplementation protected against CC overall, considering baseline levels and age. Patients with vitamin D deficiency and those not receiving bolus doses experienced the most benefit. Regarding Echinacea, prophylactic treatment with this extract (2400 mg/day) over 4 months appeared to be beneficial for preventing/treating CC. In conclusion, the current evidence of efficacy for zinc, vitamins D and C, and Echinacea is so interesting that CC patients may be encouraged to try them for preventing/treating their colds, although further studies are needed on this topic.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3492
Author(s):  
Fu-Chen Huang

Salmonella infection remains one of the major public health problems in the world, with increasing resistance to antibiotics. The resolution is to explore the pathogenesis of the infection and search for alternative therapy other than antibiotics. Immune responses to Salmonella infection include innate and adaptive immunity. Flagellin or muramyl dipeptide from Salmonella, recognized by extracellular Toll-like receptors and intracellular nucleotide-binding oligomerization domain2, respectively, induce innate immunity involving intestinal epithelial cells, neutrophils, macrophages, dendric cells and lymphocytes, including natural killer (NK) and natural killer T (NKT) cells. The cytokines, mostly interleukins, produced by the cells involved in innate immunity, stimulate adaptive immunity involving T and B cells. The mucosal epithelium responds to intestinal pathogens through its secretion of inflammatory cytokines, chemokines, and antimicrobial peptides. Chemokines, such as IL-8 and IL-17, recruit neutrophils into the cecal mucosa to defend against the invasion of Salmonella, but induce excessive inflammation contributing to colitis. Some of the interleukins have anti-inflammatory effects, such as IL-10, while others have pro-inflammatory effects, such as IL-1β, IL-12/IL-23, IL-15, IL-18, and IL-22. Furthermore, some interleukins, such as IL-6 and IL-27, exhibit both pro- and anti-inflammatory functions and anti-microbial defenses. The majority of interleukins secreted by macrophages and lymphocytes contributes antimicrobial defense or protective effects, but IL-8 and IL-10 may promote systemic Salmonella infection. In this article, we review the interleukins involved in Salmonella infection in the literature.


2021 ◽  
Vol 12 ◽  
Author(s):  
Steven K. Yarmoska ◽  
Ali M. Alawieh ◽  
Stephen Tomlinson ◽  
Kimberly B. Hoang

The complement system is a highly conserved component of innate immunity that is involved in recognizing and responding to pathogens. The system serves as a bridge between innate and adaptive immunity, and modulation of the complement system can affect the entire host immune response to a foreign insult. Neoplastic diseases have been shown to engage the complement system in order to evade the immune system, gain a selective growth advantage, and co-opt the surrounding environment for tumor proliferation. Historically, the central nervous system has been considered to be an immune-privileged environment, but it is now clear that there are active roles for both innate and adaptive immunity within the central nervous system. Much of the research on the role of immunological modulation of neoplastic disease within the central nervous system has focused on adaptive immunity, even though innate immunity still plays a critical role in the natural history of central nervous system neoplasms. Here, we review the modulation of the complement system by a variety of neoplastic diseases of the central nervous system. We also discuss gaps in the current body of knowledge and comment on future directions for investigation.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Viviane Dias Faustino ◽  
Simone Costa Alarcon Arias ◽  
Victor Ferreira Ávila ◽  
Orestes Foresto-Neto ◽  
Fernanda Florencia Fregnan Zambom ◽  
...  

Protein overload of proximal tubular cells (PTCs) can promote interstitial injury by unclear mechanisms that may involve activation of innate immunity. We investigated whether prolonged exposure of tubular cells to high protein concentrations stimulates innate immunity, triggering progressive interstitial inflammation and renal injury, and whether specific inhibition of innate or adaptive immunity would provide renoprotection in an established model of massive proteinuria, adriamycin nephropathy (ADR). Adult male Munich–Wistar rats received a single dose of ADR (5 mg/kg, iv), being followed for 2, 4, or 20 weeks. Massive albuminuria was associated with early activation of both the NF-κB and NLRP3 innate immunity pathways, whose intensity correlated strongly with the density of lymphocyte infiltration. In addition, ADR rats exhibited clear signs of renal oxidative stress. Twenty weeks after ADR administration, marked interstitial fibrosis, glomerulosclerosis, and renal functional loss were observed. Administration of mycophenolate mofetil (MMF), 10 mg/kg/day, prevented activation of both innate and adaptive immunity, as well as renal oxidative stress and renal fibrosis. Moreover, MMF treatment was associated with shifting of M from the M1 to the M2 phenotype. In cultivated NRK52-E cells, excess albumin increased the protein content of Toll-like receptor (TLR) 4 (TLR4), NLRP3, MCP-1, IL6, IL-1β, Caspase-1, α-actin, and collagen-1. Silencing of TLR4 and/or NLRP3 mRNA abrogated this proinflammatory/profibrotic behavior. Simultaneous activation of innate and adaptive immunity may be key to the development of renal injury in heavy proteinuric disease. Inhibition of specific components of innate and/or adaptive immunity may be the basis for future strategies to prevent chronic kidney disease (CKD) in this setting.


2001 ◽  
Vol 69 (12) ◽  
pp. 7955-7958 ◽  
Author(s):  
Irma Aguilar-Delfin ◽  
Mary J. Homer ◽  
Peter J. Wettstein ◽  
David H. Persing

ABSTRACT Infection of severe combined immunodeficient mice withBabesia sp. strain WA1 was studied to assess the contributions of innate and adaptive immunity in resistance to acute babesiosis. The scid mutation showed little effect in genetically susceptible C3H mice and did not decrease the inherent resistance of C57BL/6 mice to the infection, suggesting that innate immunity plays a central role in determining the course ofBabesia infection in these strains. In contrast, thescid mutation dramatically impaired resistance in moderately susceptible BALB/c mice, suggesting that acquired immunity may play an important secondary role. In comparison to their female counterparts, male mice of different genetic backgrounds showed increased resistance to the infection, indicating that the gender of the host may influence protection against babesiosis.


Author(s):  
Bin Wang ◽  
Li Wang ◽  
Xianggen Kong ◽  
Jin Geng ◽  
Di Xiao ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 infection causing coronavirus disease 2019 has spread worldwide. Whether antibodies are important for the adaptive immune responses against SARS-CoV-2 infection needs to be determined. Here, 26 cases of COVID-19 in Jinan, China, were examined and shown to be mild or with common clinical symptoms and no cases of severe symptoms were found among these patients. A striking feature of some patients is that SARS-CoV-2 could exist in patients who have virus-specific IgG antibodies for a very long period, with two cases for up to 50 days. One COVID-19 patient who did not produce any SARS-CoV-2-bound IgG successfully cleared SARS-CoV-2 after 46 days of illness, revealing that without antibody-mediated adaptive immunity, innate immunity may still be powerful enough to eliminate SARS-CoV-2. Overall, this report may provide a basis for further analysis of both innate and adaptive immunity in SARS-CoV-2 clearance, especially in non-severe cases. This study also has implications for understanding the pathogenesis and treatment of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document