scholarly journals Expression of NADPH Oxidase-Dependent Resistance to Listeriosis in Mice Occurs during the First 6 to 12 Hours of Liver Infection

2002 ◽  
Vol 70 (12) ◽  
pp. 7179-7181 ◽  
Author(s):  
Ronald LaCourse ◽  
Lynn Ryan ◽  
Robert J. North

ABSTRACT Wild-type mice inoculated with Listeria monocytogenes intravenously were capable of reducing the bacterial load in their livers by 90% within 6 h. In contrast, mice with deletions of the gene for NADPH oxidase were incapable of expressing this early oxygen-dependent anti-Listeria defense and consequently showed higher levels of liver infection at later times.

2017 ◽  
Vol 42 (4) ◽  
pp. 1358-1365 ◽  
Author(s):  
Piyush Sharma ◽  
Vishal Khairnar ◽  
Ivana Vrhovac Madunić ◽  
Yogesh Singh ◽  
Aleksandra Pandyra ◽  
...  

Background: Cellular glucose uptake may involve either non-concentrative glucose carriers of the GLUT family or Na+-coupled glucose-carrier SGLT1, which accumulates glucose against glucose gradients and may thus accomplish cellular glucose uptake even at dramatically decreased extracellular glucose concentrations. SGLT1 is not only expressed in epithelia but as well in tumour cells and immune cells. Immune cell functions strongly depend on their metabolism, therefore we hypothesized that deficiency of SGLT1 modulates the defence against bacterial infection. To test this hypothesis, we infected wild type mice and gene targeted mice lacking functional SGLT1 with Listeria monocytogenes. Methods: SGLT1 deficient mice and wild type littermates were infected with 1x104 CFU Listeria monocytogenes intravenously. Bacterial titers were determined by colony forming assay, SGLT1, TNF-α, IL-6 and IL-12a transcript levels were determined by qRT-PCR, as well as SGLT1 protein abundance and localization by immunohistochemistry. Results: Genetic knockout of SGLT1 (Slc5a1–/– mice) significantly compromised bacterial clearance following Listeria monocytogenes infection with significantly enhanced bacterial load in liver, spleen, kidney and lung, and significantly augmented hepatic expression of TNF-α and IL-12a. While all wild type mice survived, all SGLT1 deficient mice died from the infection. Conclusions: SGLT1 is required for bacterial clearance and host survival following murine Listeria infection.


2006 ◽  
Vol 75 (2) ◽  
pp. 950-957 ◽  
Author(s):  
Alban Le Monnier ◽  
Nicolas Autret ◽  
Olivier F. Join-Lambert ◽  
Francis Jaubert ◽  
Alain Charbit ◽  
...  

ABSTRACT The facultative intracellular bacterial pathogen Listeria monocytogenes induces severe fetal infection during pregnancy. Little is known about the molecular mechanisms allowing the maternofetal transmission of bacteria. In this work, we studied fetoplacental invasion by infecting mice with various mutants lacking virulence factors involved in the intracellular life cycle of L. monocytogenes. We found that the placenta was highly susceptible to bacteria, including avirulent bacteria, such as an L. monocytogenes mutant with an hly deletion (ΔLLO) and a nonpathogenic species, Listeria innocua, suggesting that permissive trophoblastic cells, trapping bacteria, provide a protective niche for bacterial survival. The ΔLLO mutant, which is unable to escape the phagosomal compartment of infected cells, failed to grow in the trophoblast tissue and to invade the fetus. Mutant bacteria with inlA and inlB deletion (ΔInlAB) grew in the placenta and fetus as well as did the wild-type virulent stain (EGDwt), indicating that in the murine model, internalins A and B are not involved in fetoplacental invasion by L. monocytogenes. Pregnant mice were then infected with an actA deletion (ΔActA) strain, a virulence-attenuated mutant that is unable to polymerize actin and to spread from cell to cell. With the ΔActA mutant, fetal infection occurs, but with a significant delay and restriction, and it requires a placental bacterial load 2 log units higher than that for the wild-type virulent strain. Definitive evidence for the role of ActA was provided by showing that a actA-complemented ΔActA mutant was restored in its capacity to invade fetuses. ActA-mediated cell-to-cell spreading plays a major role in the vertical transmission of L. monocytogenes to the fetus in the murine model.


2020 ◽  
Author(s):  
Md. Yeashin Gazi ◽  
Yuji Takeda ◽  
Hidetoshi Nara ◽  
Akemi Araki ◽  
Nobuhito Nemoto ◽  
...  

Abstract Background/Purpose: Interleukin-21 (IL-21), which is a member of the common γ-chain cytokine family, is mainly produced by CD4+ T cells and has broad impact on immune responses. IL-21 isoform is a splicing variant of IL-21 and is functionally similar to conventional IL-21. We established IL-21 isoform transgenic (IL-21isoTg) mouse, which constitutively expresses IL-21 isoform specifically in T cells. IL-21isoTg mouse possesses high amount of CD8+ T cells in normal physiological condition. The purpose of this study is to determine whether CD8+ T cells in the IL-21isoTg mouse work against intracellular bacteria infection.Methods: Wild type (WT) and IL-21isoTg mouse are orally inoculated Listeria monocytogenes (L. monocytogenes) on day 0, and 15 days after primary infection. Bacterial load in each organs, and T cell responses are analyzed.Results: IL-21isoTg and wild type (WT) mouse had similar bacterial load after L. monocytogenes primary infection. On the other hand, after secondary challenge infection, IL-21isoTg mouse exhibited reduced bacterial load in some organs compared to WT. Analysis of T cell response after primary infection showed that IL-21isoTg mouse induced higher levels of CD8+ effector memory T (TEM) cells than WT.Conclusion: IL-21-induced CD8+ TEM cells might eventually reduce the bacterial load in organs after secondary challenge infection in IL-21isoTg mouse. To the best of our knowledge, this is the first study to show that IL-21 is a pivotal factor involved in eliminating intracellular bacteria, probably through CD8+ TEM cells.


2014 ◽  
Author(s):  
Christine Deffert ◽  
Michela G. Schäppi ◽  
Jean-Claude Pache ◽  
Julien Cachat ◽  
Dominique Vesin ◽  
...  

Patients with chronic granulomatous disease(CGD) lack generation of reactive oxygen species (ROS) through the phagocyte NADPH oxidase NOX2. CGD is an immune deficiency that leads to frequent infections with certain pathogens; this is well documented for S. aureus and A. fumigatus, but less clear for mycobacteria. We therefore performed an extensive literature search which yielded 297 cases of CGD patients with mycobacterial infections; M.bovis BCG was most commonly recovered (74%). The relationship between NOX2 deficiency and BCG infection however has never been studied in a mouse model. We therefore investigated BCG infection in three different mouse models of CGD: Ncf1 mutants in two different genetic backgrounds and NOX2 knock-out mice. In addition we investigated a macrophage-specific rescue (transgenic expression of Ncf1 under the control of the CD68 promoter). Wild type mice did not develop severe disease upon BCG injection. In contrast, all three types of CGD mice were highly susceptible to BCG, as witnessed by a severe weight loss, development of hemorrhagic pneumonia, and a high mortality (~ 50%). Rescue of NOX2 activity in macrophages restored BCG resistance, similar as seen in wild-type mice. Granulomas from mycobacteria-infected wild type mice generated ROS, while granulomas from CGD mice did not. Bacterial load in CGD mice was only moderately increased, suggesting that it was not crucial for the observed phenotype. CGD mice responded with massively enhanced cytokine release (TNF-, IFN-, IL-17 and IL-12) to BCG infection, which might account for severity of the disease. Finally, in wild-type mice, macrophages formed clusters and restricted mycobacteria to granulomas, while macrophages and mycobacteria were diffusely distributed in lung tissue from CGD mice. Our results demonstrate that lack of the NADPH oxidase leads to a markedly increased severity of BCG infection through mechanisms including increased cytokine production and impaired granuloma formation.


1996 ◽  
Vol 135 (3) ◽  
pp. 647-660 ◽  
Author(s):  
G A Smith ◽  
J A Theriot ◽  
D A Portnoy

The ActA protein is responsible for the actin-based movement of Listeria monocytogenes in the cytosol of eukaryotic cells. Analysis of mutants in which we varied the number of proline-rich repeats (PRR; consensus sequence DFPPPPTDEEL) revealed a linear relationship between the number of PRRs and the rate of movement, with each repeat contributing approximately 2-3 microns/min. Mutants lacking all functional PRRs (generated by deletion or point mutation) moved at rates 30% of wild-type. Indirect immunofluorescence indicated that the PRRs were directly responsible for binding of vasodilator-stimulated phosphoprotein (VASP) and for the localization of profilin at the bacterial surface. The long repeats, which are interdigitated between the PRRs, increased the frequency with which actin-based motility occurred by a mechanism independent of the PRRs, VASP, and profilin. Lastly, a mutant which expressed low levels of ActA exhibited a phenotype indicative of a threshold; there was a very low percentage of moving bacteria, but when movement did occur, it was at wild-type rates. These results indicate that the ActA protein directs at least three separable events: (1) initiation of actin polymerization that is independent of the repeat region; (2) initiation of movement dependent on the long repeats and the amount of ActA; and (3) movement rate dependent on the PRRs.


2003 ◽  
Vol 185 (23) ◽  
pp. 6801-6808 ◽  
Author(s):  
Shannon A. Carroll ◽  
Torsten Hain ◽  
Ulrike Technow ◽  
Ayub Darji ◽  
Philippos Pashalidis ◽  
...  

ABSTRACT A novel cell wall hydrolase encoded by the murA gene of Listeria monocytogenes is reported here. Mature MurA is a 66-kDa cell surface protein that is recognized by the well-characterized L. monocytogenes-specific monoclonal antibody EM-7G1. MurA displays two characteristic features: (i) an N-terminal domain with homology to muramidases from several gram-positive bacterial species and (ii) four copies of a cell wall-anchoring LysM repeat motif present within its C-terminal domain. Purified recombinant MurA produced in Escherichia coli was confirmed to be an authentic cell wall hydrolase with lytic properties toward cell wall preparations of Micrococcus lysodeikticus. An isogenic mutant with a deletion of murA that lacked the 66-kDa cell wall hydrolase grew as long chains during exponential growth. Complementation of the mutant strain by chromosomal reintegration of the wild-type gene restored expression of this murein hydrolase activity and cell separation levels to those of the wild-type strain. Studies reported herein suggest that the MurA protein is involved in generalized autolysis of L. monocytogenes.


Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3782-3790 ◽  
Author(s):  
Stijn van der Veen ◽  
Tjakko Abee

The food-borne pathogen Listeria monocytogenes is able to form biofilms in food processing environments. Since biofilms are generally difficult to eradicate during clean-up procedures, they pose a major risk for the food industry. Stress resistance mechanisms involved in L. monocytogenes biofilm formation and disinfectant resistance have, to our knowledge, not been identified thus far. In this study, we investigated the role of hrcA, which encodes the transcriptional regulator of the class I heat-shock response, and dnaK, which encodes a class I heat-shock response chaperone protein, in static and continuous-flow biofilm formation and resistance against benzalkonium chloride and peracetic acid. Induction of both hrcA and dnaK during continuous-flow biofilm formation was observed using quantitative real-time PCR and promoter reporters. Furthermore, in-frame deletion and complementation mutants of hrcA and dnaK revealed that HrcA and DnaK are required to reach wild-type levels of both static and continuous-flow biofilms. Finally, disinfection treatments of planktonic-grown cells and suspended static and continuous-flow biofilm cells of wild-type and mutants showed that HrcA and DnaK are important for resistance against benzalkonium chloride and peracetic acid. In conclusion, our study revealed that HrcA and DnaK are important for L. monocytogenes biofilm formation and disinfectant resistance.


2016 ◽  
Vol 29 (12) ◽  
pp. 990-1003 ◽  
Author(s):  
Hua Li ◽  
Zhanquan Zhang ◽  
Chang He ◽  
Guozheng Qin ◽  
Shiping Tian

The NADPH oxidase (NOX) complex has been shown to play a crucial role in stress response and in the virulence of various fungal pathogens. The underlying molecular mechanisms of NOX, however, remain largely unknown. In the present study, a comparative proteomic analysis compared changes in protein abundance in wild-type Botrytis cinerea and ΔbcnoxR mutants in which the regulatory subunit of NOX was deleted. The ΔbcnoxR mutants exhibited reduced growth, sporulation, and impaired virulence. A total of 60 proteins, representing 49 individual genes, were identified in ΔbcnoxR mutants that exhibited significant differences in abundance relative to wild-type. Reverse transcription-quantitative polymerase chain reaction analysis demonstrated that the differences in transcript levels for 36 of the genes encoding the identified proteins were in agreement with the proteomic analysis, while the remainder exhibited reverse levels. Functional analysis of four proteins that decreased abundance in the ΔbcnoxR mutants indicated that 6-phosphogluconate dehydrogenase (BcPGD) played a role in the growth and sporulation of B. cinerea. The Δbcpgd mutants also displayed impaired virulence on various hosts, such as apple, strawberry, and tomato fruit. These results suggest that NOX can influence the expression of BcPGD, which has an impact on growth, sporulation, and virulence of B. cinerea.


2018 ◽  
Vol 315 (4) ◽  
pp. C494-C501 ◽  
Author(s):  
Wenli Liu ◽  
Yueqin Liu ◽  
Hongzhen Li ◽  
Griffin P. Rodgers

Neutrophils increase production of reactive oxygen species, including superoxide, hydrogen peroxide (H2O2), and hydroxyl radical, to destroy invading microorganisms under pathological conditions. Conversely, oxidative stress conditions, such as the presence of H2O2, induce neutrophil apoptosis, which helps to remove neutrophils after inflammation. However, the detailed molecular mechanisms that are involved in the latter process have not been elucidated. In this study, we investigated the potential role of olfactomedin 4 (Olfm4) in H2O2-induced superoxide production and apoptosis in mouse neutrophils. We have demonstrated that Olfm4 is not required for maximal-dosage PMA- and Escherichia coli bacteria-induced superoxide production, but Olfm4 contributes to suboptimal-dosage PMA- and H2O2-induced superoxide production. Using an NADPH oxidase inhibitor and gp91phox-deficient mouse neutrophils, we found that NAPDH oxidase was required for PMA-stimulated superoxide production and that Olfm4 mediated H2O2-induced superoxide production through NADPH oxidase, in mouse neutrophils. We have shown that neutrophils from Olfm4-deficient mice exhibited reduced H2O2-induced apoptosis compared with neutrophils from wild-type mice. We also demonstrated that neutrophils from Olfm4-deficient mice exhibited reduced H2O2-stimulated mitochondrial damage and membrane permeability, and as well as reduced caspase-3 and caspase-9 activity, compared with neutrophils from wild-type mice. Moreover, the cytoplasmic translocation of the proapoptotic mitochondrial proteins Omi/HtrA2 and Smac/DIABLO in response to H2O2was reduced in neutrophils from Olfm4-deficient mice compared with neutrophils from wild-type mice. Our study demonstrates that Olfm4 contributes to H2O2-induced NADPH oxidase activation and apoptosis in mouse neutrophils. Olfactomedin 4 might prove to be a potential target for future studies on inflammatory neutrophil biology and for inflammatory disease treatment.


Sign in / Sign up

Export Citation Format

Share Document