scholarly journals MdaB and NfrA, two novel reductases important in the survival and persistence of the major enteropathogen Campylobacter jejuni

2021 ◽  
Author(s):  
Fauzy Nasher ◽  
Aidan J. Taylor ◽  
Abdi Elmi ◽  
Burhan Lehri ◽  
Umer Z. Ijaz ◽  
...  

The paralogues RrpA and RrpB which are members of MarR family of DNA binding proteins are important for the survival of the global bacterial foodborne pathogen Campylobacter jejuni under redox stress. We report that RrpA is a positive regulator of mdaB , encoding a flavin-dependent quinone reductase that contributes to the protection from redox stress mediated by structurally diverse quinones, whilst RrpB negatively regulates the expression of cj1555c (renamed nfrA for NADPH-flavin reductase A), encoding a flavin reductase. NfrA reduces riboflavin at a greater rate than its derivatives, suggesting exogenous free flavins are the natural substrate. MdaB and NfrA both prefer NADPH as an electron donor. Cysteine substitution and post-translational modification analyses indicated that RrpA and RrpB employ a cysteine-based redox switch. Complete genome sequence analyses revealed mdaB is frequently found in Campylobacter and related Helicobacter spp ., whilst nfrA is predominant in C. jejuni strains. Quinones and flavins are redox cycling agents secreted by a wide range of cell-types that can form damaging superoxide by one-electron reactions. We propose a model for stress adaptation where MdaB and NfrA facilitate a two-electron reduction mechanism to the less toxic hydroquinones, thus aiding survival and persistence of this major pathogen. Importance Changes in cellular redox potential results in alteration in the oxidation state of intracellular metabolites and enzymes, consequently, cells make adjustments that favor growth and survival. The work we present here answers some of the many questions that have remained elusive over the years of investigation into the enigmatic microaerophile bacterium, Campylobacter jejuni . We employed molecular approaches to understand the regulation mechanisms and functional analyses to reveal the roles of two novel quinone and flavin reductases, both serve as major pools of cellular redox-active molecules. This work extends our knowledge on bacterial redox sensing mechanisms and the significance of hemostasis.

1995 ◽  
Vol 270 (36) ◽  
pp. 21195-21198 ◽  
Author(s):  
Harry M. Lander ◽  
Jason S. Ogiste ◽  
Kenneth K. Teng ◽  
Abraham Novogrodsky

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas M. Negretti ◽  
Christopher R. Gourley ◽  
Prabhat K. Talukdar ◽  
Geremy Clair ◽  
Courtney M. Klappenbach ◽  
...  

AbstractCampylobacter jejuni is a foodborne pathogen that binds to and invades the epithelial cells lining the human intestinal tract. Maximal invasion of host cells by C. jejuni requires cell binding as well as delivery of the Cia proteins (Campylobacter invasion antigens) to the host cell cytosol via the flagellum. Here, we show that CiaD binds to the host cell protein IQGAP1 (a Ras GTPase-activating-like protein), thus displacing RacGAP1 from the IQGAP1 complex. This, in turn, leads to the unconstrained activity of the small GTPase Rac1, which is known to have roles in actin reorganization and internalization of C. jejuni. Our results represent the identification of a host cell protein targeted by a flagellar secreted effector protein and demonstrate that C. jejuni-stimulated Rac signaling is dependent on IQGAP1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Medelin Ocejo ◽  
Beatriz Oporto ◽  
José Luis Lavín ◽  
Ana Hurtado

AbstractCampylobacter, a leading cause of gastroenteritis in humans, asymptomatically colonises the intestinal tract of a wide range of animals.Although antimicrobial treatment is restricted to severe cases, the increase of antimicrobial resistance (AMR) is a concern. Considering the significant contribution of ruminants as reservoirs of resistant Campylobacter, Illumina whole-genome sequencing was used to characterise the mechanisms of AMR in Campylobacter jejuni and Campylobacter coli recovered from beef cattle, dairy cattle, and sheep in northern Spain. Genome analysis showed extensive genetic diversity that clearly separated both species. Resistance genotypes were identified by screening assembled sequences with BLASTn and ABRicate, and additional sequence alignments were performed to search for frameshift mutations and gene modifications. A high correlation was observed between phenotypic resistance to a given antimicrobial and the presence of the corresponding known resistance genes. Detailed sequence analysis allowed us to detect the recently described mosaic tet(O/M/O) gene in one C. coli, describe possible new alleles of blaOXA-61-like genes, and decipher the genetic context of aminoglycoside resistance genes, as well as the plasmid/chromosomal location of the different AMR genes and their implication for resistance spread. Updated resistance gene databases and detailed analysis of the matched open reading frames are needed to avoid errors when using WGS-based analysis pipelines for AMR detection in the absence of phenotypic data.


2021 ◽  
Vol 9 (8) ◽  
pp. 1656
Author(s):  
Simona Gabrielli ◽  
Marialetizia Palomba ◽  
Federica Furzi ◽  
Emanuele Brianti ◽  
Gabriella Gaglio ◽  
...  

Blastocystis is a common intestinal protist distributed worldwide, infecting humans and a wide range of domestic and wild animals. It exhibits an extensive genetic diversity and, so far, 25 distinct small subunit ribosomal RNA (SSU rRNA) lineages termed subtypes (STs)) have been characterized; among them, 12 have thus far been reported in humans. The aims of the present study were to detect and genetically characterize Blastocystis sp. in synantropic animals to improve our current knowledge on the distribution and zoonotic transmission of Blastocystis STs in Italy. Samples were collected from N = 193 farmed animals and submitted to DNA extraction and PCR amplification of the SSU rRNA. Blastocystis was detected in 60 samples (31.08%) and successfully subtyped. Phylogenetic analysis evidenced that the isolates from fallow deer, goats, and pigs (N = 9) clustered within the ST5; those from pheasants (N = 2) in the ST6; those from chickens (N = 8) in the ST7; those from sheep (N = 6) in the ST10; and those from water buffaloes (N = 9) in the ST14 clade. The comparison between the present isolates from animals and those previously detected in humans in Italy suggested the animal-to-human spillover for ST6 and ST7. The present study represents the widest Blastocystis survey performed thus far in farmed animals in Italy. Further epidemiological studies using molecular approaches are required to determine the occurrence and distribution of Blastocystis STs in other potential animal reservoirs in Italy and to define the pathways of zoonotic transmission.


2021 ◽  
Author(s):  
Ebru Sahin Kehribar ◽  
Musa E İsilak ◽  
Eray U. Bozkurt ◽  
Jozef Adamcik ◽  
Raffaele Mezzenga ◽  
...  

Glycosylation is a crucial post-translational modification for a wide range of functionalities. Adhesive protein-based biomaterials in nature rely on heavily glycosylated proteins such as spider silk and mussel adhesive proteins....


2021 ◽  
Vol 22 (9) ◽  
pp. 4546
Author(s):  
Shiyao Chen ◽  
Yunqi Liu ◽  
Huchen Zhou

Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-β (TGF-β) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.


Author(s):  
Paymaan Jafar-nejad ◽  
Berit Powers ◽  
Armand Soriano ◽  
Hien Zhao ◽  
Daniel A Norris ◽  
...  

Abstract Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.


2021 ◽  
Vol 7 (5) ◽  
pp. 328
Author(s):  
María Dolores Pejenaute-Ochoa ◽  
Carlos Santana-Molina ◽  
Damien P. Devos ◽  
José Ignacio Ibeas ◽  
Alfonso Fernández-Álvarez

Protein O-mannosyltransferases (Pmts) comprise a group of proteins that add mannoses to substrate proteins at the endoplasmic reticulum. This post-translational modification is important for the faithful transfer of nascent glycoproteins throughout the secretory pathway. Most fungi genomes encode three O-mannosyltransferases, usually named Pmt1, Pmt2, and Pmt4. In pathogenic fungi, Pmts, especially Pmt4, are key factors for virulence. Although the importance of Pmts for fungal pathogenesis is well established in a wide range of pathogens, questions remain regarding certain features of Pmts. For example, why does the single deletion of each pmt gene have an asymmetrical impact on host colonization? Here, we analyse the origin of Pmts in fungi and review the most important phenotypes associated with Pmt mutants in pathogenic fungi. Hence, we highlight the enormous relevance of these glycotransferases for fungal pathogenic development.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shao-Zhen Lin ◽  
Wu-Yang Zhang ◽  
Dapeng Bi ◽  
Bo Li ◽  
Xi-Qiao Feng

AbstractInvestigation of energy mechanisms at the collective cell scale is a challenge for understanding various biological processes, such as embryonic development and tumor metastasis. Here we investigate the energetics of self-sustained mesoscale turbulence in confluent two-dimensional (2D) cell monolayers. We find that the kinetic energy and enstrophy of collective cell flows in both epithelial and non-epithelial cell monolayers collapse to a family of probability density functions, which follow the q-Gaussian distribution rather than the Maxwell–Boltzmann distribution. The enstrophy scales linearly with the kinetic energy as the monolayer matures. The energy spectra exhibit a power-decaying law at large wavenumbers, with a scaling exponent markedly different from that in the classical 2D Kolmogorov–Kraichnan turbulence. These energetic features are demonstrated to be common for all cell types on various substrates with a wide range of stiffness. This study provides unique clues to understand active natures of cell population and tissues.


2001 ◽  
Vol 114 (1) ◽  
pp. 37-47 ◽  
Author(s):  
G. Crevel ◽  
H. Huikeshoven ◽  
S. Cotterill

We originally isolated the Df31 protein from Drosophila embryo extracts as a factor which could decondense Xenopus sperm, by removing the sperm specific proteins and interacting with histones to facilitate their loading onto DNA. We now believe that this protein has a more general function in cellular DNA metabolism. The Df31 gene encodes a very hydrophilic protein with a predicted molecular mass of 18.5 kDa. Immunostaining showed that Df31 was present in a wide range of cell types throughout differentiation and in both dividing and non-dividing cells. In all cases the protein is present in large amounts, comparable with the level of nucleosomes. Injection of antisense oligonucleotides to lower the level of Df31 in embryos caused severe disruption of the nuclear structure. Large irregular clumps of DNA were formed, and in most cases the amount of DNA associated with each clump was more than that found in a normal nucleus. Immunofluorescence, cell fractionation, and formaldehyde cross-linking show that Df31 is associated with chromatin and that a significant fraction of it binds very tightly. It also shows the same binding characteristics when loaded onto chromatin in vitro. Chromatin fractionation shows that Df31 is tightly associated with nucleosomes, preferentially with oligonucleosomes. Despite this no differences were observed in the properties of nucleosomes loaded in the in vitro system in the presence and absence of Df31. These results suggest that Df31 has a role in chromosomal structure, most likely acting as a structural protein at levels of folding higher than that of nucleosomes.


Sign in / Sign up

Export Citation Format

Share Document