scholarly journals Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH

2006 ◽  
Vol 188 (15) ◽  
pp. 5469-5478 ◽  
Author(s):  
Ralf-Jörg Fischer ◽  
Sonja Oehmcke ◽  
Uta Meyer ◽  
Maren Mix ◽  
Katrin Schwarz ◽  
...  

ABSTRACT The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in Pi-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to Pi pulses. Specific mRNA transcripts were found only when external Pi concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Birhan Alemnew ◽  
Soren T. Hoff ◽  
Tamrat Abebe ◽  
Markos Abebe ◽  
Abraham Aseffa ◽  
...  

Abstract Background Understanding immune mechanisms, particularly the role of innate immune markers during latent TB infection remains elusive. The main objective of this study was to evaluate mRNA gene expression patterns of toll-like receptors (TLRs) as correlates of immunity during latent TB infection and further infer their roles as potential diagnostic biomarkers. Methods Messenger RNA (mRNA) levels were analysed in a total of 64 samples collected from apparently healthy children and adolescents latently infected with tuberculosis (n = 32) or non-infected (n = 32). Relative expression in peripheral blood of selected genes encoding TLRs (TLR-1, TLR-2, TLR-4, TLR-6 and TLR-9) was determined with a quantitative real-time polymerase chain reaction (qRT-PCR) using specific primers and florescent labelled probes and a comparative threshold cycle method to define fold change. Data were analysed using Graph-Pad Prism 7.01 for Windows and a p-value less than 0.05 was considered statistically significant. Results An increased mean fold change in the relative expression of TLR-2 and TLR-6 mRNA was observed in LTBI groups relative to non-LTBI groups (p < 0.05), whereas a slight fold decrease was observed for TLR-1 gene. Conclusions An increased mRNA expression of TLR-2 and TLR-6 was observed in latently infected individuals relative to those non-infected, possibly indicating the roles these biomarkers play in sustenance of the steady state interaction between the dormant TB bacilli and host immunity.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Ting Gong ◽  
Weiyong Wang ◽  
Houqiang Xu ◽  
Yi Yang ◽  
Xiang Chen ◽  
...  

Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.


PLoS ONE ◽  
2008 ◽  
Vol 3 (10) ◽  
pp. e3599 ◽  
Author(s):  
Aleksey Y. Ogurtsov ◽  
Leonardo Mariño-Ramírez ◽  
Gibbes R. Johnson ◽  
David Landsman ◽  
Svetlana A. Shabalina ◽  
...  

2008 ◽  
Vol 100 (4) ◽  
pp. 2015-2025 ◽  
Author(s):  
Julie E. Miller ◽  
Elizabeth Spiteri ◽  
Michael C. Condro ◽  
Ryan T. Dosumu-Johnson ◽  
Daniel H. Geschwind ◽  
...  

Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.


2014 ◽  
Vol 111 (11) ◽  
pp. 1918-1931 ◽  
Author(s):  
Sam Penglase ◽  
Kristin Hamre ◽  
Josef D. Rasinger ◽  
Staale Ellingsen

Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.


2021 ◽  
Author(s):  
Zhuo Liu ◽  
Feng He ◽  
Jing Liu ◽  
Shengrong OuYang ◽  
Zexi Li ◽  
...  

Abstract Background Wilms’ tumor, also called nephroblastoma, is the most common pediatric renal malignancy. The pathogenesis of Wilms’ tumor has been attributed to several genetic and epigenetic factors. However, the most pervasive internal mRNA modification that affects almost every process of RNA metabolism, RNA N6-Methyladenosine (m6A) methylation, has not been characterized in Wilms’ tumor. Methods Wilms’ tumor (WT) and adjacent non-cancerous (NC) tissue samples were obtained from 23 children with nephroblastoma, and the global m6A levels were measured by mass spectrometry. Analyses by m6A-mRNA epitranscriptomic microarray and mRNA microarray were performed, and m6A-related mRNAs were validated by quantitative real-time PCR for input and m6A-immunoprecipitated RNA samples from WT and NC tissues. Gene ontology analysis and KEGG pathway analysis were performed for differentially expressed genes, and expression of RNA methylation-related factors was measured by quantitative real-time PCR. Results The total m6A methylation levels in total RNA of WT samples and NC samples were (0.21 ± 0.01)% and (0.22 ± 0.01)%, respectively, with no statistically significant difference. Fifty-nine transcripts were differentially m6A-methylated between the WT and NC groups, which showed distinct m6A modification patterns. Gene ontology analysis indicated that m6A-modified genes were enriched in cancer-associated pathways, including the mTOR pathway, and conjoint analysis of the unique methylation and gene expression patterns in WT samples suggested an association with metabolic pathways.The mRNA levels of the m6A-related “reader” genes, YTHDF1, YTHDF2 and IGF2BP3, were statistically higher in WT samples than in NC samples. Conclusion This is the first study to determine the m6A modification profiles in Wilms’ tumor. Our data provide novel information regarding patterns of m6A modification that correlate with carcinogenesis in Wilms’ tumor.


mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Matthew D. Servinsky ◽  
Rebecca L. Renberg ◽  
Matthew A. Perisin ◽  
Elliot S. Gerlach ◽  
Sanchao Liu ◽  
...  

ABSTRACTBacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacteriumClostridium acetobutylicumis a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452–1462, 2015,https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose inC. acetobutylicumand suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production.IMPORTANCEClostridium acetobutylicumcan ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire ofC. acetobutylicumusing synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.


2004 ◽  
Vol 16 (8) ◽  
pp. 763 ◽  
Author(s):  
Han-Seung Kang ◽  
Chae-Kwan Lee ◽  
Ju-Ran Kim ◽  
Seong-Jin Yu ◽  
Sung-Goo Kang ◽  
...  

In the present study, differential gene expression in the uteri of ovariectomised (OVX) and pro-oestrous rats (OVX v. pro-oestrus pair) was investigated using cDNA expression array analysis. Differential uterine gene expression in OVX rats and progesterone (P4)-injected OVX rats (OVX v. OVX + P4 pair) was also examined. The uterine gene expression profiles of these two sets of animals were also compared for the effects of P4 treatment. RNA samples were extracted from uterine tissues and reverse transcribed in the presence of [α32P]-dATP. Membrane sets of rat arrays were hybridised with cDNA probe sets. Northern blot analysis was used to validate the relative gene expression patterns obtained from the cDNA array. Of the 1176 cDNAs examined, 23 genes showed significant (>two-fold) changes in expression in the OVX v. pro-oestrus pair. Twenty of these genes were upregulated during pro-oestrus compared with their expression in the OVX rat uterus. In the OVX v. OVX + P4 pair, 22 genes showed significant (>two-fold) changes in gene expression. Twenty of these genes were upregulated in the OVX + P4 animals. The genes for nuclear factor I–XI, afadin, neuroligin 2, semaphorin Z, calpain 4, cyclase-associated protein homologue, thymosin β-4X and p8 were significantly upregulated in the uteri of the pro-oestrus and OVX + P4 rats of both experimental pairs compared with the OVX rat uteri. These genes appear to be under the control of P4. One of the most interesting findings of the present study is the unexpected and marked expression of the neuroligin 2 gene in the rat uterus. This gene is expressed at high levels in the central nervous system and acts as a nerve cell adhesion factor. According to Northern blot analysis, neuroligin 2 gene expression was higher during the pro-oestrus and metoestrus stages than during the oestrus and dioestrus stages of the oestrous cycle. In addition, neuroligin 2 mRNA levels were increased by both 17β-oestradiol (E2) and P4, although P4 administration upregulated gene expression to a greater extent than injection of E2. These results indicate that neuroligin 2 gene expression in the rat uterus is under the control of both E2 and P4, which are secreted periodically during the oestrous cycle.


2003 ◽  
Vol 16 (4) ◽  
pp. 281-288 ◽  
Author(s):  
Tomomi Nakagawa ◽  
Tomoko Izumi ◽  
Mari Banba ◽  
Yosuke Umehara ◽  
Hiroshi Kouchi ◽  
...  

Phosphoenolpyruvate carboxylases (PEPCs), one form of which in each legume species plays a central role in the carbon metabolism in symbiotic root nodules, are activated through phosphorylation of a conserved residue by a specific protein kinase (PEPC-PK). We characterized the cDNAs for two PEPC isoforms of Lotus japonicus, an amide-translocating legume that forms determinate nodules. One gene encodes a nodule-enhanced form, which is more closely related to the PEPCs in amide-type indeterminate nodules than those in ureide-type determinate nodules. The other gene is expressed in shoots and roots at a low level. Both forms have the putative phosphorylation site, Ser11. We also isolated a cDNA and the corresponding genomic DNA for PEPC-PK of L. japonicus. The recombinant PEPC-PK protein expressed in Escherichia coli phosphorylated recombinant maize C4-form PEPC efficiently in vitro. The level of mRNA for PEPC-PK was high in root nodules, and those in shoots and roots were also significant. In situ hybridization revealed that the expression patterns of the transcripts for PEPC and PEPC-PK were similar in mature root nodules, but were different in emerging nodules. When L. japonicus seedlings were subjected to prolonged darkness and subsequent illumination, the activity of PEPC-PK and the mRNA levels of both PEPC and PEPC-PK in nodules decreased and then recovered, suggesting that they are regulated according to the amounts of photosynthates transported from shoots.


2020 ◽  
Author(s):  
Yuanyuan Xu ◽  
Shuping Zhang ◽  
Yujun Guo ◽  
Wen Chen ◽  
Yanqun Huang

Abstract Background: The CDS gene encodes the CDP-diacylglycerol synthase enzyme that catalyzes the formation of CDP-diacylglycerol (CDP-DAG) from phosphatidic acid. At present, there are no reports of CDS2 in birds. Here, we identified chicken CDS2 transcripts by combining conventional RT- PCR amplification, 5' RACE (Fig. 1A), and 3' RACE, explored the spatio-temporal expression profiles of total CDS2 and the longest transcript variant CDS2-4, and investigated the effect of exogenous insulin on total the mRNA level of CDS2 by quantitative real-time PCR. Results: Four transcripts of chicken CDS2 (CDS2-1, -2, -3, and -4) were identified, which were alternatively spliced at the 3′-untranslated region (UTR). CDS2 was widely expressed in all tissues examined and the longest variant CDS2-4 was the major transcript. Both total CDS2 and CDS2-4 were prominently expressed in adipose tissue and the heart, and exhibited low expression in the liver and pectoralis of 49 day-old chickens. Quantitative real-time PCR revealed that total CDS2 and CDS2-4 had different spatio-temporal expression patterns in chicken. Total CDS2 exhibited a similar temporal expression tendency with a high level in the later period of incubation (embryonic day 19 [E19] or 1-day-old) in the brain, liver, and pectoralis. While CDS2-4 presented a distinct temporal expression pattern in these tissues, CDS2-4 levels peaked at 21 days in the brain and pectoralis, while liver CDS2-4 mRNA levels were highest at the early stage of hatching (E10). Total CDS2 (P < 0.001) and CDS2-4 (P = 0.0090) mRNA levels in the liver were differentially regulated throughout development of the chicken. Exogenous insulin significantly downregulated the level of total CDS2 at 240 min in the pectoralis of Silky chickens (P < 0.01). Total CDS2 levels in the liver of Silky chickens were higher than that of the broiler in the basal state and after insulin stimulation. Conclusion: Chicken CDS2 has multiple transcripts with variation at the 3′-UTR, which was prominently expressed in adipose tissue. Total CDS2 and CDS2-4 presented distinct spatio-temporal expression patterns, and they were differentially regulated with age in liver. Insulin could regulate chicken CDS2 levels in a breed- and tissue-specific manner.


Sign in / Sign up

Export Citation Format

Share Document