scholarly journals Effects of Single-Strand DNases ExoI, RecJ, ExoVII, and SbcCD on Homologous Recombination of recBCD+ Strains of Escherichia coli and Roles of SbcB15 and XonA2 ExoI Mutant Enzymes

2007 ◽  
Vol 190 (1) ◽  
pp. 179-192 ◽  
Author(s):  
Brigitte Thoms ◽  
Inka Borchers ◽  
Wilfried Wackernagel

ABSTRACT To assess the contributions of single-strand DNases (ssDNases) to recombination in a recBCD + background, we studied 31 strains with all combinations of null alleles of exonuclease I (Δxon), exonuclease VII (xseA), RecJ DNase (recJ), and SbcCD DNase (sbcCD) and exonuclease I mutant alleles xonA2 and sbcB15. The xse recJ sbcCD Δxon and xse recJ sbcCD sbcB15 quadruple mutants were cold sensitive, while the quadruple mutant with xonA2 was not. UV sensitivity increased with ssDNase deficiencies. Most triple and quadruple mutants were highly sensitive. The absence of ssDNases hardly affected P1 transductional recombinant formation, and conjugational recombinant production was decreased (as much as 94%) in several cases. Strains with sbcB15 were generally like the wild type. We determined that the sbcB15 mutation caused an A183V exchange in exonuclease motif III and identified xonA2 as a stop codon eliminating the terminal 8 amino acids. Purified enzymes had 1.6% (SbcB15) and 0.9% (XonA2) of the specific activity of wild-type Xon (Xon+), respectively, with altered activity profiles. In gel shift assays, SbcB15 associated relatively stably with 3′ DNA overhangs, giving protection against Xon+. In addition to their postsynaptic roles in the RecBCD pathway, exonuclease I and RecJ are proposed to have presynaptic roles of DNA end blunting. Blunting may be specifically required during conjugation to make DNAs with overhangs RecBCD targets for initiation of recombination. Evidence is provided that SbcB15 protein, known to activate the RecF pathway in recBC strains, contributes independently of RecF to recombination in recBCD + cells. DNA end binding by SbcB15 can also explain other specific phenotypes of strains with sbcB15.

Genetics ◽  
1992 ◽  
Vol 131 (2) ◽  
pp. 413-421 ◽  
Author(s):  
S Merkle ◽  
J Favor ◽  
J Graw ◽  
S Hornhardt ◽  
W Pretsch

Abstract Two ethylnitrosourea-induced heterozygous mouse mutants with approximately 58 and 50% of wild-type lactate dehydrogenase (LDH) activity and a gamma-ray-induced heterozygous mutant with 50% of wild-type LDH activity in blood, liver and spleen (expressing predominantly the Ldh-1 gene) were recovered in mutagenicity experiments following spermatogonial treatment. Physiological and genetic studies revealed no indications for differences in fertility as well as hematological or other physiological traits between heterozygotes of each mutant line and wild types. This suggests that neither the mutations in the heterozygous state per se nor the resulting approximate 42 to 50% LDH deficiency affect metabolism and fitness. Physicochemical and immunological studies clearly demonstrated that the two mutations with 50% deficiency in heterozygotes result from null alleles of the Ldh-1 structural locus, generating neither enzyme activity nor immunological cross-reacting material. In contrast, the heterozygous mutant with approximately 58% of normal blood LDH activity was shown to be due to a Ldh-1 allele creating protein subunits, which in random assortment with wild-type subunits in vivo exhibit a reduced specific activity and further alterations of kinetic and physicochemical characteristics. All the mutations in the homozygous state were found to be lethal at an early postimplantation stage of embryonic development, probably due to a block of glycolysis with the corresponding loss of the main source of metabolic energy during this ontogenetic stage. The distinct physiological consequences of the total absence of a functioning LDH-A subunit in mice and humans are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 26 (1) ◽  
pp. 1-6 ◽  
Author(s):  
W. D. Murray ◽  
W. E. Inniss

A cold-sensitive (CS) mutant of the psychrotroph, Bacillus psychrophilus, was obtained by N-methyl-N′-nitro-N-nitrosoguanidine mutagenization and penicillin counterselection. In the presence of citrate, the wild type grew well at both 5 and 20 °C whereas the CS mutant grew well at 20 °C (the permissive temperature) but, at 5 °C (the restrictive temperature), grew at a reduced rate for two to three generations followed by a complete plateau in growth. Upon return of the CS mutant to 20 °C, after a delay of about 40 h, growth resumed at the appropriate rate. The CS mutant exhibited growth rates similar to parental rates on a wide variety of carbon sources at 5 °C, but when Krebs cycle intermediates were used as substrates and in the presence of an equimolar amount of citrate, the typical cold-sensitive growth pattern occurred. Comparison of oxidative phosphorylation in the parent and CS mutant indicated that no phosphorylation occurred at 5 °C in the CS mutant during the plateau in growth. Examination of the effect of temperature on ATPase activity showed that at 5 °C the specific activity of ATPase isolated from the CS mutant grown at 5 °C was 15-fold less than the ATPases isolated from wild-type cells grown at either 5 or 20 °C and 10.5-fold lower than ATPase from CS mutant cells grown at 20 °C. The large reduction in CS mutant ATPase activity at 5 °C appears to be at least partly due to an effect on synthesis since citrate did not inhibit preformed ATPase.


Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 929-934
Author(s):  
Mohan Viswanathan ◽  
Anne Lanjuin ◽  
Susan T Lovett

Abstract There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3′ DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3′ DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.


2007 ◽  
Vol 28 (3) ◽  
pp. 897-906 ◽  
Author(s):  
Thomas J. Pohl ◽  
Jac A. Nickoloff

ABSTRACT Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its “mediators,” including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Δ mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Δ mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Δ and rad52Δ mutants, but not in a rad51Δ rad52Δ double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Δ mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Δ mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 81-95 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The presence of the tRNA ochre suppressors SUP11 and SUP5 is found to induce meiosis I nondisjunction in the yeast Saccharomyces cerevisiae. The induction increases with increasing dosage of the suppressor and decreases in the presence of an antisuppressor. The effect is independent of the chromosomal location of SUP11. Each of five different chromosomes monitored exhibited nondisjunction at frequencies of 0.1%-1.1% of random spores, which is a 16-160-fold increase over wild-type levels. Increased nondisjunction is reflected by a marked increase in tetrads with two and zero viable spores. In the case of chromosome III, for which a 50-cM map interval was monitored, the resulting disomes are all in the parental nonrecombinant configuration. Recombination along chromosome III appears normal both in meioses that have no nondisjunction and in meioses for which there was nondisjunction of another chromosome. We propose that a proportion of one or more proteins involved in chromosome pairing, recombination or segregation are aberrant due to translational read-through of the normal ochre stop codon. Hygromycin B, an antibiotic that can suppress nonsense mutations via translational read-through, also induces nonrecombinant meiosis I nondisjunction. Increases in mistranslation, therefore, increase the production of aneuploids during meiosis. There was no observable effect of SUP11 on mitotic chromosome nondisjunction; however some disomes caused SUP11 ade2-ochre strains to appear white or red, instead of pink.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2021 ◽  
Vol 7 (12) ◽  
pp. eabd4113
Author(s):  
Rui Miao ◽  
Wei Yuan ◽  
Yue Wang ◽  
Irene Garcia-Maquilon ◽  
Xiaolin Dang ◽  
...  

The hab1-1abi1-2abi2-2pp2ca-1 quadruple mutant (Qabi2-2) seedlings lacking key negative regulators of ABA signaling, namely, clade A protein phosphatases type 2C (PP2Cs), show more apoplastic H+ efflux in roots and display an enhanced root growth under normal medium or water stress medium compared to the wild type. The presence of low ABA concentration (0.1 micromolar), inhibiting PP2C activity via monomeric ABA receptors, enhances root apoplastic H+ efflux and growth of the wild type, resembling the Qabi2-2 phenotype in normal medium. Qabi2-2 seedlings also demonstrate increased hydrotropism compared to the wild type in obliquely-oriented hydrotropic experimental system, and asymmetric H+ efflux in root elongation zone is crucial for root hydrotropism. Moreover, we reveal that Arabidopsis ABA-insensitive 1, a key PP2C in ABA signaling, interacts directly with the C terminus of Arabidopsis plasma membrane H+-dependent adenosine triphosphatase 2 (AHA2) and dephosphorylates its penultimate threonine residue (Thr947), whose dephosphorylation negatively regulates AHA2.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 345-351
Author(s):  
Carol J Williams ◽  
Kevin O'Hare

Abstract The suppressor of forked [su(f)] locus affects the phenotype of mutations caused by transposable element insertions at unlinked loci. It encodes a putative 84-kD protein with homology to two proteins involved in mRNA 3′ end processing; the product of the yeast RNA14 gene and the 77-kD subunit of human cleavage stimulation factor. Three su(f) mRNAs are produced by alternative polyadenylation. The 2. 6 and 2.9-kb mRNAs encode the same 84-kD protein while a 1.3-kb RNA, which terminates within the fourth intron, is unusual in having no stop codon. Using P-element-mediated gene replacement we have copied sequences from a transformation construct into the su(f) gene creating a su(f) allele at the normal genomic location that lacks the first five introns. This allele is viable and appears wild type for su(f) function, demonstrating that the 1.3-kb RNA and the sequences contained within the deleted introns are dispensable for su(f) function. Compared with studies on gene replacement at the white locus, chromosomal breaks at su(f) appear to be less efficiently repaired from ectopic sites, perhaps because of the location of su(f) at the euchromatin/heterochromatin boundary on the X chromosome.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


1978 ◽  
Vol 24 (2) ◽  
pp. 84-88 ◽  
Author(s):  
Ole Nielsen ◽  
Kenneth F. Gregory

Mutants of the thermotolerant fungus Aspergillus fumigatus I-21 (ATCC 32722) unable to grow at 37 °C were sought. Cold-sensitive mutants were enriched from progeny spores of γ-irradiated conidia by two or more incubations at various nonpermissive temperatures alternating with filtrations through cheesecloth. The approximate minimum, optimum, and maximum growth temperatures of the parent were 12, 40, and 50 °C, respectively. Mutants unable to grow at 37 °C were not successfully isolated directly from the wild type. A mutant unable to grow at 25 °C was isolated and mutations further increasing the cold sensitivity by increments of 3–5 °C were found to occur. Mutants completely unable to grow at 37 °C were obtained by five sequential mutations. All mutants grew as fast as the wild-type parent at 45 °C and higher. Each mutant produced revenants able to grow not only at the nonpermissive temperature used for its isolation but also at lower temperatures.


Sign in / Sign up

Export Citation Format

Share Document