Virological and serological studies of Venezuelan equine encephalomyelitis in humans

1976 ◽  
Vol 4 (1) ◽  
pp. 22-27
Author(s):  
G S Bowen ◽  
C H Calisher

During the 1971 epidemic of Venezuelan equine encephalomyelitis (VEE) in south Texas, 203 suspect VEE cases were evaluated by the Center for Disease Control. Sixty-seven were confirmed as cases of VEE. Laboratory confirmation was accomplished by isolation of VEE virus from a serum specimen taken during the acute illness in 50 (75%) of the confirmed cases. Serological confirmation was obtained in 17 cases (25%). Virus isolations were most often obtained from sera collected during the first 3 days of illness. Peak serum virus titers (algebraic mean, 10(5-7) suckling mouse intracranial 50% lethal doses [SMICLD50] per ml) occurred on day 2 of illness. One-half of the sera from which virus was isolated contained at least 10(5) SMICLD50/ml, which has been shown to be sufficient to infect some vector mosquitoes. Blood from 13 virus-positive VEE cases was obtained 1 and 11 months after illness. Hemagglutination-inhibiting, complement-fixing, and neutralizing antibodies were formed by all 13 patients 1 month after illness. Hemagglutination-inhibiting antibody titers were essentially unchanged 11 months after illness. Complement-fixing antibody was undetectable 11 months after illness in 23% of cases and was detectable at dilutions of 1:8 or 1:6 in 77%. Neutralizing antibody (measured by log neutralization index) was not detectable 1 year after illness in one person (8%); titers had declined from 1.0 to 2.0 in 46%, were unchanged in 39%, and were not tested in one person (8%). No evidence of intrafamilial spread of VEE virus was obtained in either of two illness and antibody surveys. A randomized household illness and antibody survey of 681 Port Isabel residents revealed an inapparent infection ratio of 1:11 and an overall antibody prevalence of 3.2%.

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 284
Author(s):  
Hulda R. Jonsdottir ◽  
Michel Bielecki ◽  
Denise Siegrist ◽  
Thomas W. Buehrer ◽  
Roland Züst ◽  
...  

Neutralizing antibodies are an important part of the humoral immune response to SARS-CoV-2. It is currently unclear to what extent such antibodies are produced after non-severe disease or asymptomatic infection. We studied a cluster of SARS-CoV-2 infections among a homogeneous population of 332 predominantly male Swiss soldiers and determined the neutralizing antibody response with a serum neutralization assay using a recombinant SARS-CoV-2-GFP. All patients with non-severe COVID-19 showed a swift humoral response within two weeks after the onset of symptoms, which remained stable for the duration of the study. One month after the outbreak, titers in COVID-19 convalescents did not differ from the titers of asymptomatically infected individuals. Furthermore, symptoms of COVID-19 did not correlate with neutralizing antibody titers. Therefore, we conclude that asymptomatic infection can induce the same humoral immunity as non-severe COVID-19 in young adults.


2021 ◽  
Author(s):  
Noa Eliakim Raz ◽  
Amos Stemmer ◽  
Yaara Leibovici-Weissman ◽  
Asaf Ness ◽  
Muhammad Awwad ◽  
...  

BACKGROUND Age and frailty are strong predictors of COVID-19 mortality. After the second BNT162b2 dose, immunity wanes faster in older (≥65 years) versus younger adults. The durability of response after the third vaccine is unclear. METHODS This prospective cohort study included healthcare workers/family members ≥60 years who received a third BNT162b2 dose. Blood samples were drawn immediately before (T0), 10-19 (T1), and 74-103 (T2) days after the third dose. Antispike IgG titers were determined using a commercial assay, seropositivity was defined as ≥50 AU/mL. Neutralizing antibody titers were determined at T2. Adverse events, COVID-19 infections, and clinical frailty scale (CFS) levels were documented. RESULTS The analysis included 97 participants (median age, 70 years [IQR, 66-74], 61% women, 58% CFS level 2). IgG titers, which increased significantly from T0 to T1 (medians, 440 AU/mL [IQR, 294-923] and 25,429 [14,203-36,114] AU/mL, respectively; P<0.001), decreased significantly by T2, but all remained seropositive (median, 8,306 AU/mL [IQR, 4595-14,701], P<0.001 vs T1). In a multivariable analysis, only time from the first vaccine was significantly associated with lower IgG levels at T2 (P=0.004). At T2, 60 patients were evaluated for neutralizing antibodies; all were seropositive (median, 1,294 antibody titer [IQR, 848-2,072]). Neutralizing antibody and antispike IgG levels were correlated (R=0.6, P<0.001). No major adverse events or COVID-19 infections were reported. CONCLUSIONS Antispike IgG and neutralizing antibodies levels remain adequate 3 months after the third BNT162b2 vaccine in healthy adults ≥60 years, although the decline in IgG is concerning. A third vaccine dose in this population should be top priority.


2021 ◽  
Author(s):  
Yu-An Kung ◽  
Chung-Guei Huang ◽  
Sheng-Yu Huang ◽  
Kuan-Ting Liu ◽  
Peng-Nien Huang ◽  
...  

The World Health Organization (WHO) has highlighted the importance of an international standard (IS) for SARS-CoV-2 neutralizing antibody titer detection, with the aim of calibrating different diagnostic techniques. In this study, IS was applied to calibrate neutralizing antibody titers (IU/mL) and binding antibody titers (BAU/mL) in response to SARS-CoV-2 vaccines. Serum samples were collected from participants receiving the Moderna (n = 20) and Pfizer (n = 20) vaccines at three time points: pre-vaccination, after one dose, and after two doses. We obtained geometric mean titers of 1404.16 and 928.75 IU/mL for neutralizing antibodies after two doses of the Moderna and Pfizer vaccines, respectively. These values provide an important baseline for vaccine development and the implementation of non-inferiority trials. We also compared three commercially available kits from Roche, Abbott, and MeDiPro for the detection of COVID-19 antibodies based on binding affinity to S1 and/or RBD. Our results demonstrated that antibody titers measured by commercial assays are highly correlated with neutralizing antibody titers calibrated by IS.


2021 ◽  
Author(s):  
Elizabeth E. McCarthy ◽  
Pamela M. Odorizzi ◽  
Emma Lutz ◽  
Carolyn P. Smullin ◽  
Iliana Tenvooren ◽  
...  

Although the formation of a durable neutralizing antibody response after an acute viral infection is a key component of protective immunity, little is known about why some individuals generate high versus low neutralizing antibody titers to infection or vaccination. Infection with Zika virus (ZIKV) during pregnancy can cause devastating fetal outcomes, and efforts to understand natural immunity to this infection are essential for optimizing vaccine design. In this study, we leveraged the high-dimensional single-cell profiling capacity of mass cytometry (CyTOF) to deeply characterize the cellular immune response to acute and convalescent ZIKV infection in a cohort of blood donors in Puerto Rico incidentally found to be viremic during the 2015-2016 epidemic in the Americas. During acute ZIKV infection, we identified widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated innate immune subsets, as well as activated follicular helper CD4+ T cells and proliferating CD27-IgD- B cells, during acute infection were associated with high titers of ZIKV neutralizing antibodies at 6 months post-infection. On the other hand, low titers of ZIKV neutralizing antibodies were associated with immune features that suggested a cytotoxic-skewed immune "set-point." Our study offers insight into the cellular coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials for ZIKV and other acute viral infections aimed at inducing high titers of neutralizing antibodies.


2021 ◽  
Author(s):  
Amani A. Saleh ◽  
Mohamed A. Saad ◽  
Islam Ryan ◽  
Magdy Amin ◽  
Mohamed I. Shindy ◽  
...  

AbstractThe current worldwide pandemic COVID-19 is causing severe human health problems, with high numbers of mortality rates and huge economic burdens that require an urgent demand for safe, and effective and vaccine development. Our study was the first trail to development and evaluation of safety and immune response to inactivated whole SARS-COV-2 virus vaccine adjuvanted with aluminium hydroxide. We used characterized SARS-COV-2 strain, severe acute respiratory syndrome coronavirus 2 isolates (SARS-CoV-2/human/EGY/Egy-SERVAC/2020) with accession numbers; MT981440; MT981439; MT981441; MT974071; MT974069 and MW250352 at GenBank that isolated from Egyptian patients SARS-CoV-2-positive. Development of the vaccine was carried out in a BSL - 3 facilities and the immunogenicity was determined in mice at two doses (55µg and 100µg per dose). All vaccinated mice were received a booster dose 14 days post first immunization. Our results demonstrated distinct cytopathic effect on the vero cell monolayers induced through SARS-COV-2 propagation and the viral particles were identified as Coronaviridae by transmission electron microscopy. SARS-CoV-2 was identified by RT-PCR performed on the cell culture. Immunogenicity of the developed vaccine indicated the high antigen-binding and neutralizing antibody titers, regardless the dose concentration, with excellent safety profiles.However, no deaths or clinical symptoms in mice groups. The efficacy of the inactivated vaccine formulation was tested by wild virus challenge the vaccinated mice and detection of viral replication in lung tissues. Vaccinated mice recorded complete protection from challenge infection three weeks post second dose. SARS-COV-2 replication was not observed in the lungs of mice following SARS-CoV-2 challenge, regardless of the level of serum neutralizing antibodies. This finding will support the future trials for evaluation an applicable SARS-CoV-2 vaccine candidate.


2019 ◽  
Vol 31 (4) ◽  
pp. 288-295 ◽  
Author(s):  
Adrienne Guignard ◽  
François Haguinet ◽  
Stéphanie Wéry ◽  
Phirangkul Kerdpanich

Understanding maternal dengue virus (DENV) neutralizing antibody kinetics in infants remains timely to develop a safe and effective childhood immunization. This retrospective study evaluated the prevalence and persistence of maternal antibody titers against DENV serotypes 1 to 4 in 139 Thai infants at 2, 6, and 7 months of age, using serum samples collected in a vaccination trial ( http://clinicaltrials.gov ; NCT00197275). Neutralizing antibodies against all 4 DENV serotypes were detected in 87.8% and 22.9% of infants at 2 and 7 months, respectively. At 2 months, DENV-4 neutralizing antibody geometric mean titers were notably lower (80) compared with DENV-1 to DENV-3 (277-471). Our results corroborate previous findings that DENV-1 to DENV-4 maternal antibodies persist at 7 months despite titers decrease from 2 months onwards. As persisting maternal antibodies may inhibit immune responses in DENV-vaccinated infants, a comprehensive understanding of DENV antibody kinetics is required in the perspective of vaccine development for infants.


1998 ◽  
Vol 31 (4) ◽  
pp. 367-371 ◽  
Author(s):  
Avelino Albas ◽  
Paulo Eduardo Pardo ◽  
Albério Antonio Barros Gomes ◽  
Fernanda Bernardi ◽  
Fumio Honma Ito

Humoral immune response using inactivated rabies vaccine was studied in 35 nelore cross-bred bovines of western region of São Paulo state. Ninety days after vaccination, 13 (92.8%) animals presented titers 30.5IU/ml, through mouse neutralization test. After 180 days, 9 (64.3%) sera showed titers 30.5IU/ml, after 270 days, only one (7.1%) showed a titer of 0.51IU/ml, and after 360 days, all animals showed titers < 0.5IU/ml. Group of animals receiving booster dose 30 days after vaccination presented, two months after, all with titers > 0.5IU/ml. At 180 days, 17 (80.9%) sera presented titers > 0.5IU/ml; at 270 days, 15 (71.4%), with titers 30.5IU/ml and at 360 days, 4 (19.0%), with titers 30.5IU/ml. Booster-dose ensured high levels of neutralizing antibodies for at least three months, and 240 days after revaccination, 71.4% of animals were found with titers 30.5IU/ml.


2020 ◽  
Vol 223 (1) ◽  
pp. 47-55 ◽  
Author(s):  
William T Lee ◽  
Roxanne C Girardin ◽  
Alan P Dupuis ◽  
Karen E Kulas ◽  
Anne F Payne ◽  
...  

Abstract Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration’s (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31–35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (&gt;960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.


2014 ◽  
Vol 89 (6) ◽  
pp. 2995-3007 ◽  
Author(s):  
Yoshikazu Honda-Okubo ◽  
Dale Barnard ◽  
Chun Hao Ong ◽  
Bi-Hung Peng ◽  
Chien-Te Kent Tseng ◽  
...  

ABSTRACTAlthough the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses.IMPORTANCECoronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines present a unique problem in that immunized individuals when infected by virus can develop lung eosinophilic pathology, a problem that is further exacerbated by the formulation of SARS-CoV vaccines with alum adjuvants. This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology. It also shows that immunity achieved with delta inulin adjuvants is long-lived, thereby overcoming the natural tendency for rapidly waning coronavirus immunity. Thus, delta inulin adjuvants may offer a unique ability to develop safer and more effective coronavirus vaccines.


2021 ◽  
Author(s):  
Lu Lu ◽  
Bobo Mok ◽  
Linlei Chen ◽  
Jacky Chan ◽  
Owen Tsang ◽  
...  

Background The SARS-CoV-2 Omicron variant, designated as a Variant of Concern(VOC) by the World Health Organization, carries numerous spike protein mutations which have been found to evade neutralizing antibodies elicited by COVID-19 vaccines. The susceptibility of Omicron variant by vaccine-induced neutralizing antibodies are urgently needed for risk assessment. Methods Omicron variant strains HKU691 and HKU344-R346K were isolated from patients using TMPRSS2-overexpressing VeroE6 cells. Whole genome sequence was determined using nanopore sequencing. Neutralization susceptibility of ancestral lineage A virus and the Omicron, Delta and Beta variants to sera from 25 BNT162b2 and 25 Coronavac vaccine recipients was determined using a live virus microneutralization assay. Results The Omicron variant strain HKU344-R346K has an additional spike R346K mutation, which is present in 8.5% of strains in GISAID database. Only 20% and 24% of BNT162b2 recipients had detectable neutralizing antibody against the Omicron variant HKU691 and HKU344-R346K, respectively, while none of the Coronavac recipients had detectable neutralizing antibody titer against either Omicron isolates. For BNT162b2 recipients, the geometric mean neutralization antibody titers(GMT) of the Omicron variant isolates(5.43 and 6.42) were 35.7-39.9-fold lower than that of the ancestral virus(229.4), and the GMT of both omicron isolates were significantly lower than those of the beta and delta variants. There was no significant difference in the GMT between HKU691 and HKU344-R346K. Conclusions Omicron variant escapes neutralizing antibodies elicited by BNT162b2 or CoronaVac. The additional R346K mutation did not affect the neutralization susceptibility. Our data suggest that the Omicron variant may be associated with lower COVID-19 vaccine effectiveness.


Sign in / Sign up

Export Citation Format

Share Document