scholarly journals The U-Rich Untranslated Region of the Hepatitis E Virus Induces Differential Type I and Type III Interferon Responses in a Host Cell-Dependent Manner

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Harini Sooryanarain ◽  
Connie L. Heffron ◽  
Xiang-Jin Meng

ABSTRACT Hepatitis E virus (HEV), a single-strand positive-sense RNA virus, is an understudied but important human pathogen. The virus can establish infection at a number of host tissues, including the small intestine and liver, causing acute and chronic hepatitis E as well as certain neurological disorders. The retinoic acid-inducible gene I (RIG-I) pathway is essential to induce the interferon (IFN) response during HEV infection. However, the pathogen-associated motif patterns (PAMPs) in the HEV genome that are recognized by RIG-I remain unknown. In this study, we first identified that HEV RNA PAMPs derived from the 3′ untranslated region (UTR) of the HEV genome induced higher levels of IFN mRNA, interferon regulatory factor-3 (IRF3) phosphorylation, and nuclear translocation than the 5′ UTR of HEV. We revealed that the U-rich region in the 3′ UTR of the HEV genome acts as a potent RIG-I PAMP, while the presence of poly(A) tail in the 3′ UTR further increases the potency. We further demonstrated that HEV UTR PAMPs induce differential type I and type III IFN responses in a cell type-dependent fashion. Predominant type III IFN response was observed in the liver tissues of pigs experimentally infected with HEV as well as in HEV RNA PAMP-induced human hepatocytes in vitro. In contrast, HEV RNA PAMPs induced a predominant type I IFN response in swine enterocytes. Taken together, the results from this study indicated that the IFN response during HEV infection depends both on viral RNA motifs and host target cell types. The results have important implications in understanding the mechanism of HEV pathogenesis. IMPORTANCE Hepatitis E virus (HEV) is an important human pathogen causing both acute and chronic viral hepatitis E infection. Currently, the mechanisms of HEV replication and pathogenesis remain poorly understood. The innate immune response acts as the first line of defense during viral infection. The retinoic acid-inducible gene I (RIG-I)-mediated interferon (IFN) response has been implicated in establishing antiviral response during HEV infection, although the HEV RNA motifs that are recognized by RIG-I are unknown. This study identified that the U-rich region in the 3′ untranslated region (UTR) of the HEV genome acts as a potent RIG-I agonist compared to the HEV 5′ UTR. We further revealed that the HEV RNA pathogen-associated motif patterns (PAMPs) induced a differential IFN response in a cell type-dependent manner: a predominantly type III IFN response in hepatocytes, and a predominantly type I IFN response in enterocytes. These data demonstrate the complexity by which both host and viral factors influence the IFN response during HEV infection.

mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Matthew A. Szaniawski ◽  
Adam M. Spivak ◽  
James E. Cox ◽  
Jonathan L. Catrow ◽  
Timothy Hanley ◽  
...  

ABSTRACTMacrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted.IMPORTANCEOur experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ling-Dong Xu ◽  
Fei Zhang ◽  
Lei Peng ◽  
Wen-Ting Luo ◽  
Chu Chen ◽  
...  

Hepatitis E virus (HEV) is one of the major etiological agents responsible for acute hepatitis. Hepatitis E virus does not replicate efficiently in mammalian cell cultures, thus a useful model that mimics persistent HEV replication is needed to dissect the molecular mechanism of pathogenesis. Here we report a genotype-3 HEV RNA replicon expressing an EGFP-Zeocin (EZ) resistant gene (p6-EZ) that persistently self-replicated in cell lines of human (Huh-7-S10-3) or hamster (BHK-21) origin after transfection with in vitro RNA transcripts and subsequent drug screening. Two cell lines, S10-3-EZ and BHK-21-EZ, stably expressed EGFP in the presence of Zeocin during continuous passages. Both genomic and subgenomic HEV RNAs and viral replicase proteins were stably expressed in persistent HEV replicon cells. The values of the cell models in antiviral testing, innate immune RNA sensing and type I IFN in host defense were further demonstrated. We revealed a role of RIG-I like receptor-interferon regulatory factor 3 in host antiviral innate immune sensing during HEV replication. We further demonstrated that treatment with interferon (IFN-α) or ribavirin significantly reduced expression of replicon RNA in a dose-dependent manner. The availability of the models will greatly facilitate HEV-specific antiviral development, and delineate mechanisms of HEV replication.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


Microbiology ◽  
2014 ◽  
Vol 160 (7) ◽  
pp. 1417-1426 ◽  
Author(s):  
Dennis Neeld ◽  
Yongxin Jin ◽  
Candace Bichsel ◽  
Jinghua Jia ◽  
Jianhui Guo ◽  
...  

Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen possessing a type III secretion system (T3SS) which injects toxic effector proteins into mammalian host cells. In previous studies, P. aeruginosa strains lacking all of the known type III effectors were shown to cause cytotoxicity upon prolonged infection time. In this study, we report the identification of a new cytotoxin, nucleoside diphosphate kinase (NDK), which is injected into eukaryotic cells in a T3SS-dependent manner. Injection of NDK is inhibited by the presence of previously known effectors of the T3SS, with an effectorless strain injecting the highest amount, suggesting active competition with the known T3SS effectors. NDK is shown to cause a cytotoxic response when expressed in eukaryotic cells, and P. aeruginosa strains harbouring NDK also show a greater toxicity than strains lacking it. Interestingly, the cytotoxic effect of intracellular NDK is independent of its kinase activity. In previous studies, NDK was shown to be secreted into culture supernatants via a type I secretion system and cause cytotoxicity in a kinase-dependent manner. Therefore, the current study highlights an alternative route of NDK secretion as well as two different cytotoxic mechanisms of NDK, depending on the extra- or intra-cellular location of the protein.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2646-2653 ◽  
Author(s):  
Y Liel ◽  
A Rudich ◽  
O Nagauker-Shriker ◽  
T Yermiyahu ◽  
R Levy

Abstract Gaucher disease patients are occasionally affected by chronic or fulminant infections. Since Gaucher cells originate from tissue phagocytes, we studied the functional implications of glucocerbroside accumulation on phagocytes in Gaucher disease patients. Circulating monocytes and granulocytes from nine type I Gaucher disease patients, and matched controls, were studied. Evaluation of phagocytic activity included (1) maximal superoxide generation rates following stimulation by phorbol 12-myristate 13-acetate (PMA), opsonized zymosan (OZ), or formyl-methionyl-leucylphenylalanine (FMLP); (2) nitroblue tetrazolium reduction test (NBT); (3) chemotaxis toward FMLP; (4) phagocytosis of OZ particles; and (5) killing activity against Staphylococcus aureus. Superoxide generation in monocytes following PMA, OZ, and FMLP stimulation was significantly suppressed at 52% +/- 15%, 39% +/- 8%, and 51% +/- 11% of control, respectively. Superoxide generation in granulocytes was normal. NBT reduction, staphylococcal killing, and phagocytosis were also markedly decreased in monocytes, and normal in granulocytes. Mean chemotaxis rates were normal in both monocytes and granulocytes; however, decreased chemotactic rates were observed in some patients. The abnormality of superoxide generation could be reproduced in a dose- and time-dependent manner in normal circulating monocytes incubated with glucocerebroside. Superoxide generation in glucocerebroside-conditioned normal monocytes in a cell-free system showed normal superoxide generation, reflecting the integrity of the NADPH oxidase complex itself. These results demonstrate markedly compromised phagocytic functions in circulating monocytes in Gaucher disease patients. These abnormalities can be attributed to accumulation of glucocerebroside, since it could be reproduced in normal monocytes incubated with glucocerebroside. Similar abnormalities in Gaucher cells throughout the reticuloendothelial system could impair host defense, and may be of particular importance in the pathogenesis of osteomyelitis in Gaucher disease patients.


1992 ◽  
Vol 284 (2) ◽  
pp. 399-405 ◽  
Author(s):  
K J Balazovich ◽  
E L McEwen ◽  
M L Lutzke ◽  
L A Boxer ◽  
T White

Human neutrophil protein kinase C (PKC) activity is inhibited by an endogenous protein found primarily in the pellet fraction from homogenized specific granules, which was both heat- and proteinase-sensitive [Balazovich, Smolen & Boxer (1986) J. Immunol. 137, 1665-1673]. We now report that two PKC isoenzymes and the endogenous PKC inhibitor, which we named PKC-I, were purified from human neutrophils. A neutrophil soluble fraction that was subjected to DEAE-Sephacel chromatography yielded highly enriched PKC because, by definition, enzymic activity was strictly dependent on Ca2+ and phosphatidylserine. Hydroxyapatite chromatography resolved two peaks of PKC activity. Type II and Type III PKC isoenzymes were each identified on Western blots by using isoenzyme-specific monoclonal antibodies. Unlike rat brain, from which PKC isoenzymes were also purified, Type I PKC was not detected in human neutrophils. Western blots indicated that both Type II and Type III PKC isoenzymes had molecular masses near 80 kDa. In agreement with other reports, PKC was autophosphorylated in vitro. PKC-I, an endogenous neutrophil inhibitor of PKC, was purified to apparent homogeneity by DEAE-Sephacel and S-400 Sephacel chromatography. PKC-I had a molecular mass of 41 kDa. PKC-I inhibited purified PKC activity stimulated by 1,2-diacylglycerols in a concentration-dependent manner, and inhibited PKC-dependent phosphorylation of proteins present in neutrophil cytosol.


2016 ◽  
Vol 60 (4) ◽  
pp. 2132-2139 ◽  
Author(s):  
Daniel Todt ◽  
Catherine François ◽  
Anggakusuma ◽  
Patrick Behrendt ◽  
Michael Engelmann ◽  
...  

ABSTRACTHepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae. HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patientsin vivo. In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed.


1999 ◽  
Vol 6 (5) ◽  
pp. 729-733 ◽  
Author(s):  
Rutong Huang ◽  
Derong Li ◽  
Shaojing Wei ◽  
Qinghong Li ◽  
Xitong Yuan ◽  
...  

ABSTRACT The isolation and identification of the 87A strain of epidemic hepatitis E virus (HEV) by means of cell culturing have been described previously. This paper reports the successful isolation of a sporadic HEV strain (G93-2) in human lung carcinoma cell (A549) cultures. The etiology, molecular and biological properties, and serological relationship of this new strain to other, epidemic HEV strains are described. The propagation of both sporadic and epidemic HEV strains in a cell culture system will facilitate vaccine research.


Author(s):  
Eugénie Bagdassarian ◽  
Virginie Doceul ◽  
Marie Pellerin ◽  
Antonin Demange ◽  
Léa Meyer ◽  
...  

Hepatitis E virus (HEV) is responsible for large waterborne epidemics of hepatitis in endemic countries and is an emerging zoonotic pathogen worldwide. In endemic regions, HEV-1 or HEV-2 genotypes are frequently associated with fulminant hepatitis in pregnant women, while with zoonotic HEV (HEV-3 and HEV-4), chronic cases of hepatitis and severe neurological disorders are reported. Hence, it is important to characterize the interactions between HEV and its host. Here, we investigated the ability of the non-structural polyprotein encoded by the first open reading frame (ORF1) of HEV to modulate the host early antiviral response and in particular the type I interferon (IFN-I) system. We found that the amino-terminal region of HEV-3 ORF1 (MetPCP), containing a putative methyltransferase (Met) and a papain-like cysteine protease (PCP) functional domain, inhibited IFN-stimulated response element (ISRE) promoter activation and the expression of several IFN-stimulated genes (ISGs) in response to IFN-I. We showed that the MetPCP domain interfered with the Janus kinase (JAK)/signal transducer and activator of transcription protein (STAT) signalling pathway by inhibiting STAT1 nuclear translocation and phosphorylation after IFN-I treatment. By contrast, MetPCP had no effect on STAT2 phosphorylation and a limited impact on the activation of the JAK/STAT pathway after IFN-II stimulation. This inhibitory function seemed to be genotype-dependent as MetPCP from HEV-1 had no significant effect on the JAK/STAT pathway. Overall, this study provides evidence that the predicted MetPCP domain of HEV ORF1 antagonises STAT1 activation to modulate the IFN response.


Sign in / Sign up

Export Citation Format

Share Document