scholarly journals Dual Roles of RNA Helicase A in CREB-Dependent Transcription

2001 ◽  
Vol 21 (14) ◽  
pp. 4460-4469 ◽  
Author(s):  
Satoko Aratani ◽  
Ryouji Fujii ◽  
Takayuki Oishi ◽  
Hidetoshi Fujita ◽  
Tetsuya Amano ◽  
...  

ABSTRACT RNA helicase A (RHA) is a member of an ATPase/DNA and RNA helicase family and is a homologue of Drosophila maleless protein (MLE), which regulates X-linked gene expression. RHA is also a component of holo-RNA polymerase II (Pol II) complexes and recruits Pol II to the CREB binding protein (CBP). The ATPase and/or helicase activity of RHA is required for CREB-dependent transcription. To further understand the role of RHA on gene expression, we have identified a 50-amino-acid transactivation domain that interacts with Pol II and termed it the minimal transactivation domain (MTAD). The protein sequence of this region contains six hydrophobic residues and is unique to RHA homologues and well conserved. A mutant with this region deleted from full-length RHA decreased transcriptional activity in CREB-dependent transcription. In addition, mutational analyses revealed that several tryptophan residues in MTAD are important for the interaction with Pol II and transactivation. These mutants had ATP binding and ATPase activities comparable to those of wild-type RHA. A mutant lacking ATP binding activity was still able to interact with Pol II. In CREB-dependent transcription, the transcriptional activity of each of these mutants was less than that of wild-type RHA. The activity of the double mutant lacking both functions was significantly lower than that of each mutant alone, and the double mutant had a dominant negative effect. These results suggest that RHA could independently regulate CREB-dependent transcription either through recruitment of Pol II or by ATP-dependent mechanisms.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


1991 ◽  
Vol 11 (1) ◽  
pp. 47-54
Author(s):  
H Chan ◽  
S Hartung ◽  
M Breindl

We have studied the role of DNA methylation in repression of the murine alpha 1 type I collagen (COL1A1) gene in Mov13 fibroblasts. In Mov13 mice, a retroviral provirus has inserted into the first intron of the COL1A1 gene and blocks its expression at the level of transcriptional initiation. We found that regulatory sequences in the COL1A1 promoter region that are involved in the tissue-specific regulation of the gene are unmethylated in collagen-expressing wild-type fibroblasts and methylated in Mov13 fibroblasts, confirming and extending earlier observations. To directly assess the role of DNA methylation in the repression of COL1A1 gene transcription, we treated Mov13 fibroblasts with the demethylating agent 5-azacytidine. This treatment resulted in a demethylation of the COL1A1 regulatory sequences but failed to activate transcription of the COL1A1 gene. Moreover, the 5-azacytidine treatment induced a transcription-competent chromatin structure in the retroviral sequences but not in the COL1A1 promoter. In DNA transfection and microinjection experiments, we found that the provirus interfered with transcriptional activity of the COL1A1 promoter in Mov13 fibroblasts but not in Xenopus laevis oocytes. In contrast, the wild-type COL1A1 promoter was transcriptionally active in Mov13 fibroblasts. These experiments showed that the COL1A1 promoter is potentially transcriptionally active in the presence of proviral sequences and that Mov13 fibroblasts contain the trans-acting factors required for efficient COL1A1 gene expression. Our results indicate that the provirus insertion in Mov13 can inactivate COL1A1 gene expression at several levels. It prevents the developmentally regulated establishment of a transcription-competent methylation pattern and chromatin structure of the COL1A1 domain and, in the absence of DNA methylation, appears to suppress the COL1A1 promoter in a cell-specific manner, presumably by assuming a dominant chromatin structure that may be incompatible with transcriptional activity of flanking cellular sequences.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 560-560 ◽  
Author(s):  
Ma. Reina Improgo ◽  
Adam Kiezun ◽  
Yaoyu Wang ◽  
Lillian Werner ◽  
Petar Stojanov ◽  
...  

Abstract Abstract 560 Nuclear factor kappa B (NF-κB) encompasses a family of transcription factors involved in oncogenic processes including cellular proliferation and apoptotic inhibition. Constitutive activation of NF-κB has been observed in hematologic malignancies and is thought to confer resistance to chemotherapeutic agents. Here, we examine the role of the NF-κB pathway in chronic lymphocytic leukemia (CLL). Whole-exome sequencing was performed using tumor and matched germline DNA from 167 CLL patients. We identified 51 patients (30%) carrying 53 non-silent somatic variants in genes of the canonical NF-κB pathway, which consists of 272 genes as defined by the Ingenuity Pathway Analysis tool. Of the 99 patients whose germline sequences have been analyzed to date, 27 patients (27%) carry 34 non-silent germline variants in NF-κB pathway genes. A total of 67 patients (40%) have at least one non-silent somatic or germline variant. Variants in the NFKB1 gene, itself, were also observed: a somatic variant, H66R, found in two patients, and two germline variants, Y89F and R849W, each found in one patient. To evaluate the functional consequences of the NFKB1 variants, we performed site-directed mutagenesis to generate full-length NFKB1 cDNAs encoding these variants. We subsequently measured transcriptional activity of wild-type and mutant NFKB1 via luciferase assays in HEK293T cells using reporter cassettes containing the NFKB1 response element. Transcriptional activity of the three NFKB1 variants was found to be at least 2-fold higher than that of wild-type NFKB1 (p<0.0001). We further hypothesized that this increased transcriptional activity would lead to increased expression of NFKB1 downstream target genes. Analysis of gene expression profiles from Affymetrix HG-U133 Plus 2.0 Arrays of 65 CLL patient samples showed that the NFKB1 downstream targets CCL3, CCL4, and CD69 are upregulated in NFKB1 variants. To validate these results, we performed quantitative RT-PCR in patients with (n=3) or without (n=9) NFKB1 variants and confirmed upregulation of CCL3 (p=0.0286), CCL4 (p=0.0384), and CD69 (p=0.0263). Direct transfection of HEK293T cells with NFKB1 variants also resulted in a 3.3-fold upregulation of CCL3 (p=0.05). To test the hypothesis that deregulation of the NF-κB pathway is a key mechanism in CLL, we compared gene expression profiles of NF-κB pathway genes between CLL patient samples (n=146) and normal B cells (n=16) and found overall upregulation of the NF-κB pathway in CLL (Kolmogorov-Smirnov test, p=2.2e-16). K-means clustering and principal component analysis (PCA) further revealed that CLL patients can be divided into two subgroups exhibiting differential magnitude of NF-κB pathway upregulation. Studies in progress aim to identify the clinical significance of these subgroups. Finally, we assessed the effect of inhibiting the NF-κB pathway using the cell permeant NF-κB inhibitor, SN50. We performed Annexin V/PI staining 24 hours post-treatment in CLL cells with (n=9) or without (n=3) NF-κB pathway variants. SN50 increased cell death 1.8-fold in all cells tested (p<0.0001). Quantitative RT-PCR also showed a 59% decrease in expression of CCL3 one hour post-treatment, confirming inhibition of the NF-κB pathway. In conclusion, our findings demonstrate that a high proportion of CLL patients harbor somatic and germline variants in NF-κB pathway genes, some of which appear to be functional. Furthermore, the NF-κB pathway is upregulated in CLL and pharmacological inhibition of the pathway leads to increased cancer cell death. Functional characterization of NF-κB pathway variants offers mechanistic insight into the disease, providing novel targets for therapy. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 22 (7) ◽  
pp. 1971-1980 ◽  
Author(s):  
Cherie L. Mueller ◽  
Judith A. Jaehning

ABSTRACT The Saccharomyces cerevisiae Paf1-RNA polymerase II (Pol II) complex is biochemically and functionally distinct from the Srb-mediator form of Pol II holoenzyme and is required for full expression of a subset of genes. In this work we have used tandem affinity purification tags to isolate the Paf1 complex and mass spectrometry to identify additional components. We have established that Ctr9, Rtf1, and Leo1 are factors that associate with Paf1, Cdc73, and Pol II, but not with the Srb-mediator. Deletion of either PAF1 or CTR9 leads to similar severe pleiotropic phenotypes, which are unaltered when the two mutations are combined. In contrast, we found that deletion of LEO1 or RTF1 leads to few obvious phenotypes, although mutation of RTF1 suppresses mutations in TATA-binding protein, alters transcriptional start sites, and affects elongation. Remarkably, deletion of LEO1 or RTF1 suppresses many paf1Δ phenotypes. In particular, an rtf1Δ paf1Δ double mutant grew faster, was less temperature sensitive, and was more resistant to caffeine and hydroxyurea than a paf1Δ single mutant. In addition, expression of the G1 cyclin CLN1, reduced nearly threefold in paf1Δ, is restored to wild-type levels in the rtf1Δ paf1Δ double mutant. We suggest that lack of Paf1 results in a defective complex and a block in transcription, which is relieved by removal of Leo1 or Rtf1.


2018 ◽  
Author(s):  
Nairita Maitra ◽  
Jayamani Anandhakumar ◽  
Heidi M. Blank ◽  
Craig D. Kaplan ◽  
Michael Polymenis

ABSTRACTThe question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.


Author(s):  
Yuan-Qing Pan ◽  
Li Xing

: RNA helicase A (RHA) is a DExH-box helicase that plays regulatory roles in a variety of cellular processes including transcription, translation, RNA splicing, editing, transport, and processing, microRNA genesis and maintenance of genomic stability. It is involved in virus replication, oncogenesis, and innate immune response. RHA can unwind nucleic acid duplex by nucleoside triphosphate hydrolysis. The insight into molecular mechanism of helicase activity is fundamental to understanding the role of RHA in the cell. Herein, we reviewed the current advances on the helicase activity of RHA and its relevance to gene expression, particularly, to genesis of circular RNA.


2008 ◽  
Vol 28 (9) ◽  
pp. 3076-3087 ◽  
Author(s):  
Jamila Laoukili ◽  
Monica Alvarez ◽  
Lars A. T. Meijer ◽  
Marie Stahl ◽  
Shabaz Mohammed ◽  
...  

ABSTRACT The Forkhead transcription factor FoxM1 is an important regulator of gene expression during the G2 phase. Here, we show that FoxM1 transcriptional activity is kept low during G1/S through the action of its N-terminal autoinhibitory domain. We found that cyclin A/cdk complexes are required to phosphorylate and activate FoxM1 during G2 phase. Deletion of the N-terminal autoinhibitory region of FoxM1 generates a mutant of FoxM1 (ΔN-FoxM1) that is active throughout the cell cycle and no longer depends on cyclin A for its activation. Mutation of two cyclin A/cdk sites in the C-terminal transactivation domain leads to inactivation of full-length FoxM1 but does not affect the transcriptional activity of the ΔN-FoxM1 mutant. We show that the intramolecular interaction of the N- and C-terminal domains depends on two RXL/LXL motifs in the C terminus of FoxM1. Mutation of these domains leads to a similar gain of function as deletion of the N-terminal repressor domain. Based on these observations we propose a model in which FoxM1 is kept inactive during the G1/S transition through the action of the N-terminal autorepressor domain, while phosphorylation by cyclin A/cdk complexes during G2 results in relief of inhibition by the N terminus, allowing activation of FoxM1-mediated gene transcription.


2006 ◽  
Vol 189 (5) ◽  
pp. 1884-1889 ◽  
Author(s):  
Alycia N. Bittner ◽  
Amanda Foltz ◽  
Valerie Oke

ABSTRACT Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 or groEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30°C and 40°C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response.


2015 ◽  
Author(s):  
Andrew J. Millar ◽  
Jamie T. Carrington ◽  
Wei Ven Tee ◽  
Sarah K. Hodge

Background: Pervasive, 24-hour rhythms from the biological clock affect diverse biological processes in metabolism and behaviour, including the human cell division cycle and sleep-wake cycle, nightly transpiration and energy balance in plants, and seasonal breeding in both plants and animals. The clock mechanism in the laboratory model plant species Arabidopsis thaliana is complex, in part due to the multiple interlocking, negative feedback loops that link the clock genes. Clock gene mutants are powerful tools to manipulate and understand the clock mechanism and its effects on physiology. The LATE ELONGATED HYPOCOTYL and CIRCADIAN CLOCK ASSOCIATED 1 genes encode dawn-expressed, Myb-related repressor proteins that delay the expression of other clock genes until late in the day. Double mutant plants (lhy cca1) have low-amplitude, short-period rhythms that have been used in multiple studies of the plant circadian clock. Results: We used in vivo imaging of several luciferase (LUC) reporter genes to test how the rhythmic gene expression of wild-type and lhy cca1 mutant plants responded to light:dark cycles. Red, blue and red+blue light were similarly able to entrain these gene expression rhythms. The timing of expression rhythms in double mutant plants showed little or no response to the duration of light under 24h light:dark cycles (dusk sensitivity), in contrast to the wild type. As the period of the mutant clock is about 18h, we tested light:dark cycles of different duration (T cycles), simulating altered rotation of planet Earth. lhy cca1 double mutants regained as much dusk sensitivity in 20h T cycles as the wild type in 24h cycles, though the phase of the rhythm in the mutants was much earlier than wild type. The severe, triple lhy cca1 gi mutants also regained dusk sensitivity in 20h cycles. The double mutant showed some dusk sensitivity under 28h cycles. lhy cca1 double mutants under 28h cycles with short photoperiods, however, had the same apparent phase as wild-type plants. Conclusion: Simulating altered planetary rotation with light:dark cycles can reveal normal circadian performance in clock mutants that have been described as arrhythmic under standard conditions. The features rescued here comprise a dynamic behaviour (apparent phase under 28h cycles) and a dynamic property (dusk sensitivity under 20h cycles). These conditional clock phenotypes indicate that parts of the clock mechanism continue to function independently of LHY and CCA1, despite the major role of these genes in wild-type plants under standard conditions. Accessibility: Most results here will be published only in this format, citable by the DOI. Data and analysis are publicly accessible on the BioDare resource (www.biodare.ed.ac.uk), as detailed in the links below. Transgenic lines are linked to Stock Centre IDs below (Table 7).


Sign in / Sign up

Export Citation Format

Share Document