scholarly journals Environmental and Genetic Determinants of Biofilm Formation inParacoccus denitrificans

mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Santosh Kumar ◽  
Stephen Spiro

ABSTRACTThe genome of the denitrifying bacteriumParacoccus denitrificanspredicts the expression of a small heme-containing nitric oxide (NO) binding protein, H-NOX. The genome organization and prior work in other bacteria suggest that H-NOX interacts with a diguanylate cyclase that cyclizes GTP to make cyclic di-GMP (cdGMP). Since cdGMP frequently regulates attached growth as a biofilm, we first established conditions for biofilm development byP. denitrificans. We found that adhesion to a polystyrene surface is strongly stimulated by the addition of 10 mM Ca2+to rich media. The genome encodes at least 11 repeats-in-toxin family proteins that are predicted to be secreted by the type I secretion system (TISS). We deleted the genes encoding the TISS and found that the mutant is almost completely deficient for attached growth. Adjacent to the TISS genes there is a potential open reading frame encoding a 2,211-residue protein with 891 Asp-Ala repeats. This protein is also predicted to bind calcium and to be a TISS substrate, and a mutant specifically lacking this protein is deficient in biofilm formation. By analysis of mutants and promoter reporter fusions, we show that biofilm formation is stimulated by NO generated endogenously by the respiratory reduction of nitrite. A mutant lacking both predicted diguanylate cyclases encoded in the genome overproduces biofilm, implying that cdGMP is a negative regulator of attached growth. Our data are consistent with a model in which there are H-NOX-dependent and -independent pathways by which NO stimulates biofilm formation.IMPORTANCEThe bacteriumParacoccus denitrificansis a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth ofP. denitrificansis stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability ofP. denitrificansto grow attached to a surface.

2010 ◽  
Vol 78 (5) ◽  
pp. 2320-2328 ◽  
Author(s):  
Megan L. Falsetta ◽  
Alastair G. McEwan ◽  
Michael P. Jennings ◽  
Michael A. Apicella

ABSTRACT Neisseria gonorrhoeae is the etiologic agent of gonorrhea, which has been among the most frequently reported communicable diseases in the United States since 1960. Women frequently do not exhibit symptoms, which can lead to chronic infection. N. gonorrhoeae readily forms biofilms over abiotic surfaces, over primary and transformed cervical epithelial cells, and over cervical tissues in vivo. Biofilms are often associated with chronic infection, which suggests a link between biofilm formation and asymptomatic gonorrhea in women. Proteins involved in anaerobic metabolism and oxidative-stress tolerance are critical for normal biofilm formation of N. gonorrhoeae. Therefore, we examined the spatial profiles of anaerobic respiration in N. gonorrhoeae, using an aniA′-′gfp transcriptional fusion. Nitric oxide (NO) can elicit biofilm dispersal when present at sublethal concentrations in the surrounding medium. Some reports indicate that NO may also encourage biofilm formation at higher, potentially lethal concentrations. NO is produced by polymorphonuclear lymphocytes (PMNs) and cervical endothelial and epithelial cells. Thus, we also examined the effect of NO on N. gonorrhoeae biofilms. We found that anaerobic respiration occurs predominantly in the substratum of gonococcal biofilms and that expression of aniA is induced over time in biofilms. Treatment with high concentrations of a rapid-release NO donor prevents biofilm formation when supplied early in biofilm development but can also enhance biofilm formation once anaerobic respiration is initiated. NO treatment partially restores biofilm formation in an aniA::kan insertion mutant, which suggests that N. gonorrhoeae in biofilms may use NO as a substrate for anaerobic growth but prefer nitrite.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Yong Fu ◽  
Xia Cui ◽  
Sai Fan ◽  
Jing Liu ◽  
Xiao Zhang ◽  
...  

ABSTRACT Acyl coenzyme A (CoA)-binding protein (ACBP) can bind acyl-CoAs with high specificity and affinity, thus playing multiple roles in cellular functions. Mitochondria of the apicomplexan parasite Toxoplasma gondii have emerged as key organelles for lipid metabolism and signaling transduction. However, the rationale for how this parasite utilizes acyl-CoA-binding protein to regulate mitochondrial lipid metabolism remains unclear. Here, we show that an ankyrin repeat-containing protein, TgACBP2, is localized to mitochondria and displays active acyl-CoA-binding activities. Dephosphorylation of TgACBP2 is associated with relocation from the plasma membrane to the mitochondria under conditions of regulation of environmental [K+]. Under high [K+] conditions, loss of ACBP2 induced mitochondrial dysfunction and apoptosis-like cell death. Disruption of ACBP2 caused growth and virulence defects in the type II strain but not in type I parasites. Interestingly, mitochondrial association factor-1 (MAF1)-mediated host mitochondrial association (HMA) restored the growth ability of ACBP2-deficient type II parasites. Lipidomics analysis indicated that ACBP2 plays key roles in the cardiolipin metabolism of type II parasites and that MAF1 expression complemented the lipid metabolism defects of ACBP2-deficient type II parasites. In addition, disruption of ACBP2 caused attenuated virulence of Prugniuad (Pru) parasites for mice. Taking the results collectively, these data indicate that ACBP2 is critical for the growth and virulence of type II parasites and for the growth of type I parasites under high [K+] conditions. IMPORTANCE Toxoplasma gondii is one of the most successful human parasites, infecting nearly one-third of the total world population. T. gondii tachyzoites residing within parasitophorous vacuoles (PVs) can acquire fatty acids both via salvage from host cells and via de novo synthesis pathways for membrane biogenesis. However, although fatty acid fluxes are known to exist in this parasite, how fatty acids flow through Toxoplasma lipid metabolic organelles, especially mitochondria, remains unknown. In this study, we demonstrated that Toxoplasma expresses an active ankyrin repeat containing protein TgACBP2 to coordinate cardiolipin metabolism. Specifically, HMA acquisition resulting from heterologous functional expression of MAF1 rescued growth and lipid metabolism defects in ACBP2-deficient type II parasites, manifesting the complementary role of host mitochondria in parasite cardiolipin metabolism. This work highlights the importance of TgACBP2 in parasite cardiolipin metabolism and provides evidence for metabolic association of host mitochondria with T. gondii.


2018 ◽  
Vol 201 (2) ◽  
Author(s):  
Carly Ching ◽  
Brendan Yang ◽  
Chineme Onwubueke ◽  
David Lazinski ◽  
Andrew Camilli ◽  
...  

ABSTRACTAcinetobacter baumanniiis a Gram-negative opportunistic pathogen that is known to survive harsh environmental conditions and is a leading cause of hospital-acquired infections. Specifically, multicellular communities (known as biofilms) ofA. baumanniican withstand desiccation and survive on hospital surfaces and equipment. Biofilms are bacteria embedded in a self-produced extracellular matrix composed of proteins, sugars, and/or DNA. Bacteria in a biofilm are protected from environmental stresses, including antibiotics, which provides the bacteria with selective advantage for survival. Although some gene products are known to play roles in this developmental process inA. baumannii, mechanisms and signaling remain mostly unknown. Here, we find that Lon protease inA. baumanniiaffects biofilm development and has other important physiological roles, including motility and the cell envelope. Lon proteases are found in all domains of life, participating in regulatory processes and maintaining cellular homeostasis. These data reveal the importance of Lon protease in influencing keyA. baumanniiprocesses to survive stress and to maintain viability.IMPORTANCEAcinetobacter baumanniiis an opportunistic pathogen and is a leading cause of hospital-acquired infections.A. baumanniiis difficult to eradicate and to manage, because this bacterium is known to robustly survive desiccation and to quickly gain antibiotic resistance. We sought to investigate biofilm formation inA. baumannii, since much remains unknown about biofilm formation in this bacterium. Biofilms, which are multicellular communities of bacteria, are surface attached and difficult to eliminate from hospital equipment and implanted devices. Our research identifies multifaceted physiological roles for the conserved bacterial protease Lon inA. baumannii. These roles include biofilm formation, motility, and viability. This work broadly affects and expands understanding of the biology ofA. baumannii, which will permit us to find effective ways to eliminate the bacterium.


2013 ◽  
Vol 57 (10) ◽  
pp. 4877-4881 ◽  
Author(s):  
César de la Fuente-Núñez ◽  
Fany Reffuveille ◽  
Kathryn E. Fairfull-Smith ◽  
Robert E. W. Hancock

ABSTRACTThe ability of nitric oxide (NO) to induce biofilm dispersion has been well established. Here, we investigated the effect of nitroxides (sterically hindered nitric oxide analogues) on biofilm formation and swarming motility inPseudomonas aeruginosa. A transposon mutant unable to produce nitric oxide endogenously (nirS) was deficient in swarming motility relative to the wild type and the complemented strain. Moreover, expression of thenirSgene was upregulated by 9.65-fold in wild-type swarming cells compared to planktonic cells. Wild-type swarming levels were substantially restored upon the exogenous addition of nitroxide containing compounds, a finding consistent with the hypothesis that NO is necessary for swarming motility. Here, we showed that nitroxides not only mimicked the dispersal activity of NO but also prevented biofilms from forming in flow cell chambers. In addition, anirStransposon mutant was deficient in biofilm formation relative to the wild type and the complemented strain, thus implicating NO in the formation of biofilms. Intriguingly, despite its stand-alone action in inhibiting biofilm formation and promoting dispersal, a nitroxide partially restored the ability of anirSmutant to form biofilms.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
Liyun Wang ◽  
Robert Keatch ◽  
Qi Zhao ◽  
John A. Wright ◽  
Clare E. Bryant ◽  
...  

ABSTRACT Biofilm formation on abiotic surfaces in the food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine the cellular architecture of early biofilms and the bacterial behavior of the constituent cells remains largely unknown. In this study, we examined the specific role of type I fimbriae in nascent stages of biofilm formation and the response of microcolonies to environmental flow shear at the single-cell resolution. The results show that type I fimbriae are not required for reversible adhesion from plankton, but they are critical for the irreversible adhesion of Escherichia coli strain MG1655 cells that form biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing firm cell surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E. coli on the surface. After the application of shear stress, bacterial retention is dominated by the three-dimensional architecture of colonies, independent of the population size, and the multilayered structure could protect the embedded cells from being insulted by fluid shear, while the cell membrane permeability mainly depends on the biofilm population size and the duration of the shear stress. IMPORTANCE Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level; thus, little is known about how individual bacterium behavior within biofilms and the multicellular architecture are influenced by bacterial appendages (e.g., pili/fimbriae) and environmental factors during early biofilm formation. We applied confocal laser scanning microscopy (CLSM) to visualize Escherichia coli microcolonies at a single-cell resolution. Our findings suggest that type I fimbriae are vital to the initiation of bacterial proliferation on surfaces. We also found that the fluid shear stress affects the biofilm architecture and cell membrane permeability of the constituent bacteria in a different way: the onset of the biofilm is linked with the three-dimensional morphology, while membranes are regulated by the overall population of microcolonies.


2018 ◽  
Vol 86 (9) ◽  
Author(s):  
Cecily R. Wood ◽  
Emily J. Ohneck ◽  
Richard E. Edelmann ◽  
Luis A. Actis

ABSTRACTTranscriptional analyses ofAcinetobacter baumanniiATCC 17978 showed that the expression of A1S_2091 was enhanced in cells cultured in darkness at 24°C through a process that depended on the BlsA photoreceptor. Disruption of A1S_2091, a component of the A1S_2088-A1S_2091 polycistronic operon predicted to code for a type I chaperone/usher pilus assembly system, abolished surface motility and pellicle formation but significantly enhanced biofilm formation on plastic by bacteria cultured in darkness. Based on these observations, the A1S_2088-A1S_2091 operon was named thephotoregulatedpilus ABCD (prpABCD) operon, with A1S_2091 coding for the PrpA pilin subunit. Unexpectedly, comparative analyses of ATCC 17978 andprpAisogenic mutant cells cultured at 37°C showed the expression of light-regulated biofilm biogenesis and motility functions under a temperature condition that drastically affects BlsA production and its light-sensing activity. These assays also suggest that ATCC 17978 cells produce alternative light-regulated adhesins and/or pilus systems that enhance bacterial adhesion and biofilm formation at both 24°C and 37°C on plastic as well as on the surface of polarized A549 alveolar epithelial cells, where the formation of bacterial filaments and cell chains was significantly enhanced. The inactivation ofprpAalso resulted in a significant reduction in virulence when tested by using theGalleria mellonellavirulence model. All these observations provide strong evidence showing the capacity ofA. baumanniito sense light and interact with biotic and abiotic surfaces using undetermined alternative sensing and regulatory systems as well as alternative adherence and motility cellular functions that allow this pathogen to persist in different ecological niches.


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Alessandra Vitale ◽  
Sarah Paszti ◽  
Kohei Takahashi ◽  
Masanori Toyofuku ◽  
Gabriella Pessi ◽  
...  

ABSTRACT Burkholderia thailandensis is a soil saprophyte that is closely related to the pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans. The environmental niches and infection sites occupied by these bacteria are thought to contain only limited concentrations of oxygen, where they can generate energy via denitrification. However, knowledge of the underlying molecular basis of the denitrification pathway in these bacteria is scarce. In this study, we employed a transposon sequencing (Tn-Seq) approach to identify genes conferring a fitness benefit for anaerobic growth of B. thailandensis. Of the 180 determinants identified, several genes were shown to be required for growth under denitrifying conditions: the nitrate reductase operon narIJHGK2K1, the aniA gene encoding a previously unknown nitrite reductase, and the petABC genes encoding a cytochrome bc1, as well as three novel regulators that control denitrification. Our Tn-Seq data allowed us to reconstruct the entire denitrification pathway of B. thailandensis and shed light on its regulation. Analyses of growth behaviors combined with measurements of denitrification metabolites of various mutants revealed that nitrate reduction provides sufficient energy for anaerobic growth, an important finding in light of the fact that some pathogenic Burkholderia species can use nitrate as a terminal electron acceptor but are unable to complete denitrification. Finally, we demonstrated that a nitrous oxide reductase mutant is not affected for anaerobic growth but is defective in biofilm formation and accumulates N2O, which may play a role in the dispersal of B. thailandensis biofilms. IMPORTANCE Burkholderia thailandensis is a soil-dwelling saprophyte that is often used as surrogate of the closely related pathogen Burkholderia pseudomallei, the causative agent of melioidosis and a classified biowarfare agent. Both organisms are adapted to grow under oxygen-limited conditions in rice fields by generating energy through denitrification. Microoxic growth of B. pseudomallei is also considered essential for human infections. Here, we have used a Tn-Seq approach to identify the genes encoding the enzymes and regulators required for growth under denitrifying conditions. We show that a mutant that is defective in the conversion of N2O to N2, the last step in the denitrification process, is unaffected in microoxic growth but is severely impaired in biofilm formation, suggesting that N2O may play a role in biofilm dispersal. Our study identified novel targets for the development of therapeutic agents to treat meliodiosis.


2020 ◽  
Vol 202 (6) ◽  
Author(s):  
John H. Kimbrough ◽  
J. Thomas Cribbs ◽  
Linda L. McCarter

ABSTRACT The marine bacterium and human pathogen Vibrio parahaemolyticus rapidly colonizes surfaces by using swarming motility and forming robust biofilms. Entering one of the two colonization programs, swarming motility or sessility, involves differential regulation of many genes, resulting in a dramatic shift in physiology and behavior. V. parahaemolyticus has evolved complex regulation to control these two processes that have opposing outcomes. One mechanism relies on the balance of the second messenger c-di-GMP, where high c-di-GMP favors biofilm formation. V. parahaemolyticus possesses four homologous regulators, the Scr transcription factors, that belong in a Vibrio-specific family of W[F/L/M][T/S]R motif transcriptional regulators, some members of which have been demonstrated to bind c-di-GMP. In this work, we explore the role of these Scr regulators in biofilm development. We show that each protein binds c-di-GMP, that this binding requires a critical R in the binding motif, and that the biofilm-relevant activities of CpsQ, CpsS, and ScrO but not ScrP are dependent upon second messenger binding. ScrO and CpsQ are the primary drivers of biofilm formation, as biofilms are eliminated when both of these regulators are absent. ScrO is most important for capsule expression. CpsQ is most important for RTX-matrix protein expression, although it contributes to capsule expression when c-di-GMP levels are high. Both regulators contribute to O-antigen ligase expression. ScrP works oppositely in a minor role to repress the ligase gene. CpsS plays a regulatory checkpointing role by negatively modulating expression of these biofilm-pertinent genes under fluctuating c-di-GMP conditions. Our work further elucidates the multifactorial network that contributes to biofilm development in V. parahaemolyticus. IMPORTANCE Vibrio parahaemolyticus can inhabit open ocean, chitinous shells, and the human gut. Such varied habitats and the transitions between them require adaptable regulatory networks controlling energetically expensive behaviors, including swarming motility and biofilm formation, which are promoted by low and high concentrations of the signaling molecule c-di-GMP, respectively. Here, we describe four homologous c-di-GMP-binding Scr transcription factors in V. parahaemolyticus. Members of this family of regulators are present in many vibrios, yet their numbers and the natures of their activities differ across species. Our work highlights the distinctive roles that these transcription factors play in dynamically controlling biofilm formation and architecture in V. parahaemolyticus and serves as a powerful example of regulatory network evolution and diversification.


2016 ◽  
Vol 198 (19) ◽  
pp. 2643-2650 ◽  
Author(s):  
Boo Shan Tseng ◽  
Charlotte D. Majerczyk ◽  
Daniel Passos da Silva ◽  
Josephine R. Chandler ◽  
E. Peter Greenberg ◽  
...  

ABSTRACTMembers of the genusBurkholderiaare known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterizedBurkholderia thailandensisbiofilm development under flow conditions and sought to determine whether QS contributes to this process.B. thailandensisbiofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS.B. thailandensishas three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the threeB. thailandensisQS systems, we show that QS-1 is required for proper biofilm development, since abtaR1mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. ThebtaR1mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions.IMPORTANCEThe saprophyteBurkholderia thailandensisis a close relative of the pathogenic bacteriumBurkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms,B. thailandensisis an ideal model organism for investigating questions inBurkholderiaphysiology. In this study, we characterizedB. thailandensisbiofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows thatB. thailandensisproduces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience ofB. thailandensisbiofilms against changes in the nutritional environment.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sumit K. Matta ◽  
Kelley Patten ◽  
Quiling Wang ◽  
Bae-Hoon Kim ◽  
John D. MacMicking ◽  
...  

ABSTRACT Phagocytic cells are the first line of innate defense against intracellular pathogens, and yet Toxoplasma gondii is renowned for its ability to survive in macrophages, although this paradigm is based on virulent type I parasites. Surprisingly, we find that avirulent type III parasites are preferentially cleared in naive macrophages, independent of gamma interferon (IFN-γ) activation. The ability of naive macrophages to clear type III parasites was dependent on enhanced activity of NADPH oxidase (Nox)-generated reactive oxygen species (ROS) and induction of guanylate binding protein 5 (Gbp5). Macrophages infected with type III parasites (CTG strain) showed a time-dependent increase in intracellular ROS generation that was higher than that induced by type I parasites (GT1 strain). The absence of Nox1 or Nox2, gp91 subunit isoforms of the Nox complex, reversed ROS-mediated clearance of CTG parasites. Consistent with this finding, both Nox1−/− and Nox2−/− mice showed higher susceptibility to CTG infection than wild-type mice. Additionally, Gbp5 expression was induced upon infection and the enhanced clearance of CTG strain parasites was reversed in Gbp5−/− macrophages. Expression of a type I ROP18 allele in CTG prevented clearance in naive macrophages, suggesting that it plays a role counteracting Gbp5. Although ROS and Gbp5 have been linked to activation of the NLRP3 inflammasome, clearance of CTG parasites did not rely on induction of pyroptosis. Collectively, these findings reveal that not all strains of T. gondii are adept at avoiding clearance in macrophages and define new roles for ROS and Gbps in controlling this important intracellular pathogen. IMPORTANCE Toxoplasma infections in humans and other mammals are largely controlled by IFN-γ produced by the activated adaptive immune system. However, we still do not completely understand the role of cell-intrinsic functions in controlling Toxoplasma or other apicomplexan infections. The present work identifies intrinsic activities in naive macrophages in counteracting T. gondii infection. Using an avirulent strain of T. gondii, we highlight the importance of Nox complexes in conferring protection against parasite infection both in vitro and in vivo. We also identify Gbp5 as a novel macrophage factor involved in limiting intracellular infection by avirulent strains of T. gondii. The rarity of human infections caused by type III strains suggests that these mechanisms may also be important in controlling human toxoplasmosis. These findings further extend our understanding of host responses and defense mechanisms that act to control parasitic infections at the cellular level.


Sign in / Sign up

Export Citation Format

Share Document