scholarly journals Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens

Author(s):  
Marie-Hélène Corre ◽  
Anne Mercier ◽  
Mathilde Bouteiller ◽  
Alix Khalil ◽  
Christophe Ginevra ◽  
...  

Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation.

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 940
Author(s):  
Nicoleta Cristina Gaitan

Recent market studies show that the market for remote monitoring devices of different medical parameters will grow exponentially. Globally, more than 4 million individuals will be monitored remotely from the perspective of different health parameters by 2023. Of particular importance is the way of remote transmission of the information acquired from the medical sensors. At this time, there are several methods such as Bluetooth, WI-FI, or other wireless communication interfaces. Recently, the communication based on LoRa (Long Range) technology has had an explosive development that allows the transmission of information over long distances with low energy consumption. The implementation of the IoT (Internet of Things) applications using LoRa devices based on open Long Range Wide-Area Network (LoRaWAN) protocol for long distances with low energy consumption can also be used in the medical field. Therefore, in this paper, we proposed and developed a long-distance communication architecture for medical devices based on the LoRaWAN protocol that allows data communications over a distance of more than 10 km.


Mekatronika ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 52-62
Author(s):  
Kwai Yang Sak ◽  
Ahmad Najmuddin Ibrahim

Long Range (LoRa) is a wireless radio frequency technology under the Low Power Wide Area Network (LPWAN). LoRa is able to communicate long range and low energy consumption. The communication range has become an essential element in the wireless radio frequency technology in the Internet of Things (IoT). The presence of LoRa is able IoT application performs in long communication distances with high noise sensitivity ability. People can operate, monitor, and do a variety of tasks from a remote distance. Therefore, this research aims to evaluate the performance of the LoRa connection between radio transceivers in remote locations. The different environment and structural elements affect the LoRa performance. This thesis will be supported by the experiment that LoRa communication in different environments and tests. This experiment tests in line of sight (LOS) and non-line of sight (NLOS). Two sets of LoRa parameters, including Spreading Factor (SF), Bandwidth, and coding rate, are tested in different environments. The experiment tests the LoRa performance in various aspects: received signal strength indicator (RSSI) and packet received ratio (PPR) at different coverage ranges. In addition, the LoRa performance is evaluated in university, residential areas and vegetation areas under similar temperature, weather, and time. The LoRa coverage distance in the vegetation area and university area is reached 900 meters in the LOS test. Still, the vegetation area's signal is more stable and able to receive weaker RSSI signals. The LoRa coverage distance in the NLOS test is shorter compared to the LOS test. NLOS test has only one-third of the LOS LoRa communication distance. It is due to the signal penetration on structural elements such as buildings and woods cause the signal power loss and only transmitting a shorter distance. The LoRa parameter with SF9, 31.25kHz bandwidth and 4/8 coding rate has a better coverage range and stable connection.


2021 ◽  
Vol 2 (2) ◽  
pp. 59-69
Author(s):  
Dewasni Hasiru ◽  
Syamsu Qamar Badu ◽  
Hamzah B. Uno

The study is done with the goal of providing a glimpse of what media is effectively used in assisting remote math. The method used in the study is a qualitative approach with a library study type (library research). Retrieval with a documentary technique that is, locate appropriate literature sources through books, research journals and other sources of information relating to effective long-range learning media in mathematics. To see the effectiveness of media using media indicators in the long-range learning system: (1) create motivation, (2) increase learning yields, (3) make learners remember old knowledge, (4) learners capable of applying the knowledge learned. Research shows the media that can be used in long-distance math study is google classroom, learning video, Whatsapp, and zoom. However, effective media used in long-distance math study is google classroom and learning videos, Whatsapp and zoom is still less effective in the long-distance mathematical learning process


2018 ◽  
Vol 115 (38) ◽  
pp. E8882-E8891 ◽  
Author(s):  
Monica T. Posgai ◽  
Sam Tonddast-Navaei ◽  
Manori Jayasinghe ◽  
George M. Ibrahim ◽  
George Stan ◽  
...  

IgA effector functions include proinflammatory immune responses triggered upon clustering of the IgA-specific receptor, FcαRI, by IgA immune complexes. FcαRI binds to the IgA1–Fc domain (Fcα) at the CH2–CH3 junction and, except for CH2 L257 and L258, all side-chain contacts are contributed by the CH3 domain. In this study, we used experimental and computational approaches to elucidate energetic and conformational aspects of FcαRI binding to IgA. The energetic contribution of each IgA residue in the binding interface was assessed by alanine-scanning mutagenesis and equilibrium surface plasmon resonance (SPR). As expected, hydrophobic residues central to the binding site have strong energetic contributions to the FcαRI:Fcα interaction. Surprisingly, individual mutation of CH2 residues L257 and L258, found at the periphery of the FcαRI binding site, dramatically reduced binding affinity. Comparison of antibody:receptor complexes involving IgA or its precursor IgY revealed a conserved receptor binding site at the CH2–CH3 junction (or its equivalent). Given the importance of residues near the CH2–CH3 junction, we used coarse-grained Langevin dynamics simulations to understand the functional dynamics in Fcα. Our simulations indicate that FcαRI binding, either in an asymmetric (1:1) or symmetric (2:1) complex with Fcα, propagated long-range conformational changes across the Fc domains, potentially impacting the hinge and Fab regions. Subsequent SPR experiments confirmed that FcαRI binding to the Fcα CH2–CH3 junction altered the kinetics of HAA lectin binding at the IgA1 hinge. Receptor-induced long-distance conformational transitions have important implications for the interaction of aberrantly glycosylated IgA1 with anti-glycan autoantibodies in IgA nephropathy.


2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Marcos C. de O. Santos ◽  
José Laílson-Brito ◽  
Leonardo Flach ◽  
Júlia E. F. Oshima ◽  
Giovanna C. Figueiredo ◽  
...  

Abstract: Cetaceans were monitored along ca. 700 km of the southeast coast of Brazil (22°S to 25°S) from 1995 to 2014 using photo-identification. The objective of this study was to identify any presence of long-distance movements for monitored cetacean species and discuss implications. Data on long-range movements of four of the monitored species are presented after the analysis of 321,765 photographs taken for individual identification. Seven individuals from four populations of Guiana dolphins (Sotalia guianensis) considered resident to particular estuaries or bays were reported in dispersal involving movement between pairs of protected areas over long-range distances varying between 86 and 135 km. Three cataloged rough-toothed dolphins (Steno bredanensis), first seen in Guanabara Bay, Rio de Janeiro state (22°46'S) in November 2011, were sighted 240 km southwards as members of the same group in coastal waters of São Paulo state (23°46'S) in July 2014. Water depth for those sightings ranged from 16 to 52.7 m; local sightings of rough-toothed dolphins in Brazil have frequently been in shallow waters, but the species global distribution is usually associated with deeper waters. In a 27-day interval in the spring of 2012, a group of 16 orcas (Orcinus orca) travelled ca. 277 km in shallow coastal waters ranging from 20 to 30 m deep. Orcas are commonly observed between November and February in southeast Brazil, probably in search for prey. In summer months between 2012 and 2014, three Bryde's whales (Balaenoptera edeni) sighted in waters ranging from 14 to 49 m deep, moved between 218 and 327 km. Bryde's whales are usually found in local coastal waters where they spend summer months feeding on sardines. To date, these are the longest estimated movements reported to S. guianensis, S. bredanensis, O. orca and B. edeni in the Southwestern Atlantic Ocean.


2020 ◽  
Vol 38 (1) ◽  
pp. 201-214 ◽  
Author(s):  
Paul Campitelli ◽  
Liskin Swint-Kruse ◽  
S Banu Ozkan

Abstract Amino acid substitutions at nonconserved protein positions can have noncanonical and “long-distance” outcomes on protein function. Such outcomes might arise from changes in the internal protein communication network, which is often accompanied by changes in structural flexibility. To test this, we calculated flexibilities and dynamic coupling for positions in the linker region of the lactose repressor protein. This region contains nonconserved positions for which substitutions alter DNA-binding affinity. We first chose to study 11 substitutions at position 52. In computations, substitutions showed long-range effects on flexibilities of DNA-binding positions, and the degree of flexibility change correlated with experimentally measured changes in DNA binding. Substitutions also altered dynamic coupling to DNA-binding positions in a manner that captured other experimentally determined functional changes. Next, we broadened calculations to consider the dynamic coupling between 17 linker positions and the DNA-binding domain. Experimentally, these linker positions exhibited a wide range of substitution outcomes: Four conserved positions tolerated hardly any substitutions (“toggle”), ten nonconserved positions showed progressive changes from a range of substitutions (“rheostat”), and three nonconserved positions tolerated almost all substitutions (“neutral”). In computations with wild-type lactose repressor protein, the dynamic couplings between the DNA-binding domain and these linker positions showed varied degrees of asymmetry that correlated with the observed toggle/rheostat/neutral substitution outcomes. Thus, we propose that long-range and noncanonical substitutions outcomes at nonconserved positions arise from rewiring long-range communication among functionally important positions. Such calculations might enable predictions for substitution outcomes at a range of nonconserved positions.


2000 ◽  
Vol 27 (3) ◽  
pp. 279 ◽  
Author(s):  
G. Garab ◽  
L. Mustárdy

In higher plants and green algae two types of thylakoids are distinguished, granum (stacked) and stroma (unstacked) thylakoids. They form a three-dimensional (3D) network with large lateral heterogeneity: photosystem II (PSII) and the associated main chlorophyll a/b light-harvesting complex (LHCII) are found predominantly in the stacked region, while PSI and LHCI are located mainly in the unstacked region of the membrane. This picture emerged from the discovery of the physical separation of the two photosystems (Boardman and Anderson 1964). Granal chloroplasts possess significant flexibility, which is essential for optimizing the photosynthetic machinery under various environmental conditions. However, our understanding concerning the assembly, structural dynamics and regulatory functions of grana is far from being complete. In this paper we overview the significance of the three-dimensional structure of grana in the absorption properties, ionic equilibrations, and in the diffusion of membrane components between the stacked and unstacked regions. Further, we discuss the role of chiral macrodomains in the grana. Lateral heterogeneity of thylakoid membranes is proposed to be a consequence of the formation of macrodomains constituted of LHCII and PSII; their long range order permits long distance migration of excitation energy, which explains the energetic connectivity of PSII particles. The ability of macrodomains to undergo light-induced reversible structural changes lends structural flexibility to the granum. In purified LHCII, which has also been shown to form stacked lamellar aggregates with long range chiral order, excitation energy migrates for large distances; these macroaggregates are also capable of undergoing light-induced reversible structural changes and fluorescence quenching. Hence, some basic properties of grana appear to originate from its main constituent, the LHCII.


1997 ◽  
Vol 36 (6) ◽  
pp. 711-720 ◽  
Author(s):  
Kathrin Baumann ◽  
Andreas Stohl

Abstract In September 1995, 18 gas balloon teams competed at the Gordon Bennett Cup, a long-distance ballooning event. The landing positions, travel times of all teams, and detailed information on the tracks of four teams are available. A special version of the trajectory model FLEXTRA (flexible trajectories) is used that allows the heights of calculated trajectories to be adjusted to the respective balloon heights at every computation time step. The comparison of calculated and observed balloon trajectories allows a validation of the trajectory model. In this case study, the agreement between calculated and balloon trajectories was good, with average relative transport errors of less than 20% of the travel distance after 46 h of travel time. Most of the trajectory errors originate from interpolation errors and from amplifications of small position disturbances in divergent wind fields. Trajectory ensembles, taking into account stochastic errors occurring during the trajectory calculations, are shown to be very reliable in assessing the uncertainties of the computed trajectories. In the present study, the balloon tracks were enveloped by the ensemble trajectories most of the time, suggesting that errors in the analyzed wind fields were relatively small.


Science ◽  
2012 ◽  
Vol 338 (6103) ◽  
pp. 94-97 ◽  
Author(s):  
M. T. J. van Loenhout ◽  
M. V. de Grunt ◽  
C. Dekker

DNA in cells exhibits a supercoiled state in which the double helix is additionally twisted to form extended intertwined loops called plectonemes. Although supercoiling is vital to many cellular processes, its dynamics remain elusive. In this work, we directly visualize the dynamics of individual plectonemes. We observe that multiple plectonemes can be present and that their number depends on applied stretching force and ionic strength. Plectonemes moved along DNA by diffusion or, unexpectedly, by a fast hopping process that facilitated very rapid (<20 milliseconds) long-range plectoneme displacement by nucleating a new plectoneme at a distant position. These observations directly reveal the dynamics of plectonemes and identify a mode of movement that allows long-distance reorganization of the conformation of the genome on a millisecond time scale.


2015 ◽  
Vol 282 (1812) ◽  
pp. 20150832 ◽  
Author(s):  
Johanna Chemnitz ◽  
Petra C. Jentschke ◽  
Manfred Ayasse ◽  
Sandra Steiger

Long-range sex pheromones have been subjected to substantial research with a particular focus on their biosynthesis, peripheral perception, central processing and the resulting orientation behaviour of perceivers. Fundamental to the research on sex attractants was the assumption that they primarily coordinate species recognition. However, especially when they are produced by the less limiting sex (usually males), the evolution of heightened condition dependence might be expected and long-range sex pheromones might, therefore, also inform about a signaller's quality. Here we provide, to our knowledge, the first comprehensive study of the role of a male's long-range pheromone in mate choice that combines chemical analyses, video observations and field experiments with a multifactorial manipulation of males' condition. We show that the emission of the long-distance sex pheromone of the burying beetle, Nicrophorus vespilloides is highly condition-dependent and reliably reflects nutritional state, age, body size and parasite load—key components of an individual's somatic state. Both, the quantity and ratio of the pheromone components were affected but the time invested in pheromone emission was largely unaffected by a male's condition. Moreover, the variation in pheromone emission caused by the variation in condition had a strong effect on the attractiveness of males in the field, with males in better nutritional condition, of older age, larger body size and bearing less parasites being more attractive. That a single pheromone is influenced by so many aspects of the somatic state and causes such variation in a male's attractiveness under field conditions was hitherto unknown and highlights the need to integrate indicator models of sexual selection into pheromone research.


Sign in / Sign up

Export Citation Format

Share Document