scholarly journals Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH

2020 ◽  
Vol 79 (4) ◽  
pp. 507-517 ◽  
Author(s):  
Christopher W Wasson ◽  
Giuseppina Abignano ◽  
Heidi Hermes ◽  
Maya Malaab ◽  
Rebecca L Ross ◽  
...  

BackgroundSystemic sclerosis (SSc) is characterised by autoimmune activation, tissue and vascular fibrosis in the skin and internal organs. Tissue fibrosis is driven by myofibroblasts, that are known to maintain their phenotype in vitro, which is associated with epigenetically driven trimethylation of lysine 27 of histone 3 (H3K27me3).MethodsFull-thickness skin biopsies were surgically obtained from the forearms of 12 adult patients with SSc of recent onset. Fibroblasts were isolated and cultured in monolayers and protein and RNA extracted. HOX transcript antisense RNA (HOTAIR) was expressed in healthy dermal fibroblasts by lentiviral induction employing a vector containing the specific sequence. Gamma secretase inhibitors were employed to block Notch signalling. Enhancer of zeste 2 (EZH2) was blocked with GSK126 inhibitor.ResultsSSc myofibroblasts in vitro and SSc skin biopsies in vivo display high levels of HOTAIR, a scaffold long non-coding RNA known to direct the histone methyltransferase EZH2 to induce H3K27me3 in specific target genes. Overexpression of HOTAIR in dermal fibroblasts induced EZH2-dependent increase in collagen and α-SMA expression in vitro, as well as repression of miRNA-34A expression and consequent NOTCH pathway activation. Consistent with these findings, we show that SSc dermal fibroblast display decreased levels of miRNA-34a in vitro. Further, EZH2 inhibition rescued miRNA-34a levels and mitigated the profibrotic phenotype of both SSc and HOTAIR overexpressing fibroblasts in vitro.ConclusionsOur data indicate that the EZH2-dependent epigenetic phenotype of myofibroblasts is driven by HOTAIR and is linked to miRNA-34a repression-dependent activation of NOTCH signalling.

Rheumatology ◽  
2020 ◽  
Vol 59 (Supplement_2) ◽  
Author(s):  
Christopher W Wasson ◽  
Giuseppina Abignano ◽  
Rebecca Ross ◽  
Francesco Del Galdo

Abstract Background Fibroblasts explanted from affected tissues in systemic sclerosis (SSc) maintain their pro-fibrotic phenotype in vitro. This includes increased secretion of collagens and other extracellular matrix proteins and increased proportion of α-Smooth Muscle Actin (α-SMA) positive cells (myofibroblasts). It has been previously shown that among their profibrotic features, myofibroblasts display activation of WNT signalling, which is linked to a decreased basal expression of AXIN2. Here we aimed to determine whether specific long non-coding RNA (lncRNAs) expressed in myofibroblasts could drive the epigenetically stable decreased expression of Axin 2 in vitro. Methods Full thickness skin biopsies were surgically obtained from the forearms of twelve adult patients with SSc of recent onset. Fibroblasts were isolated and cultured in monolayers and protein and RNA extracted from the fibroblast cultures. Laser capture was performed to isolate cells expressing or not α-SMA as a marker of myofibroblast differentiation. LncRNA HOTAIR was overexpressed in healthy dermal fibroblasts by lentiviral induction. EZH2 was blocked in cultured fibroblasts with the specific inhibitor GSK126. Results HOTAIR expression was increased in SSc patients’ skin (100 fold) and in SSc explanted fibroblasts (5 fold; p < 0.001 for both). Further, laser captured α-SMA expressing fibroblasts expressed in average 2.5 fold higher HOTAIR RNA levels compared to α -SMA negative cells from the same donors (P < 0.05). In vitro, lentiviral induced stable overexpression of HOTAIR in healthy dermal fibroblasts led to their profibrotic activation, including significantly increased expression of Col1A1 and α-SMA both at mRNA and protein levels (2.8 and 1.8 fold respectively, p < 0.05). We further showed that HOTAIR-induced profibrotic activation was due to EZH2 dependent spread of H3k27me3 methylation marker, as demonstrated by complete inhibition by treatment with GSK126. HOTAIR driven EZH2 histone methylation suppressed the expression of Axin 2 in SSc fibroblasts. The reduced Axin 2 levels led to stabilisation of beta catenin and WNT signalling pathway activation. Conclusion Here we show that the epigenetically stable activation of SSc dermal fibroblasts is due to HOTAIR. We also identified a major downstream target of HOTAIR is Axin-2. The results of these studies identify a new venue to modulate fibroblasts biology which could inform clinical research to resolve chronic fibrosis and re-establish tissue homeostasis in SSc. Disclosures C.W. Wasson None. G. Abignano None. R. Ross None. F. Del Galdo Consultancies; AstraZeneca, GSK, Boehringer-Ingelheim, Actelion, Capella Biosciences, Chemomab.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 157 ◽  
Author(s):  
Jian Zheng ◽  
Zhibo Wang ◽  
Hua Yang ◽  
Xiaolei Yao ◽  
Pengcheng Yang ◽  
...  

Long non-coding RNA (LncRNA) have been identified as important regulators in the hypothalamic-pituitary-ovarian axis associated with sheep prolificacy. However, their expression pattern and potential roles in the pituitary are yet unclear. To explore the potential mRNAs and lncRNAs that regulate the expression of the genes involved in sheep prolificacy, we used stranded specific RNA-seq to profile the pituitary transcriptome (lncRNA and mRNA) in high prolificacy (genotype FecB BB, litter size = 3; H) and low prolificacy sheep (genotype FecB B+; litter size = 1; L). Our results showed that 57 differentially expressed (DE) lncRNAs and 298 DE mRNAs were found in the pituitary between the two groups. The qRT-PCR results correlated well with the RNA-seq results. Moreover, functional annotation analysis showed that the target genes of the DE lncRNAs were significantly enriched in pituitary function, hormone-related pathways as well as response to stimulus and some other terms related to reproduction. Furthermore, a co-expression network of lncRNAs and target genes was constructed and reproduction related genes such as SMAD2, NMB and EFNB3 were included. Lastly, the interaction of candidate lncRNA MSTRG.259847.2 and its target gene SMAD2 were validated in vitro of sheep pituitary cells. These differential mRNA and lncRNA expression profiles provide a valuable resource for understanding the molecular mechanisms underlying Hu sheep prolificacy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoning Wang ◽  
Xingfen Wang ◽  
Yan Zhang ◽  
Jun Yang ◽  
Zhikun Li ◽  
...  

Abstract Background Verticillium wilt is a widespread and destructive disease, which causes serious loss of cotton yield and quality. Long non-coding RNA (lncRNA) is involved in many biological processes, such as plant disease resistance response, through a variety of regulatory mechanisms, but their possible roles in cotton against Verticillium dahliae infection remain largely unclear. Results Here, we measured the transcriptome of resistant G. hirsutum following infection by V. dahliae and 4277 differentially expressed lncRNAs (delncRNAs) were identified. Localization and abundance analysis revealed that delncRNAs were biased distribution on chromosomes. We explored the dynamic characteristics of disease resistance related lncRNAs in chromosome distribution, induced expression profiles, biological function, and these lncRNAs were divided into three categories according to their induced expression profiles. For the delncRNAs, 687 cis-acting pairs and 14,600 trans-acting pairs of lncRNA-mRNA were identified, which indicated that trans-acting was the main way of Verticillium wilt resistance-associated lncRNAs regulating target mRNAs in cotton. Analyzing the regulation pattern of delncRNAs revealed that cis-acting and trans-acting lncRNAs had different ways to influence target genes. Gene Ontology (GO) enrichment analysis revealed that the regulatory function of delncRNAs participated significantly in stimulus response process, kinase activity and plasma membrane components. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that delncRNAs participated in some important disease resistance pathways, such as plant-pathogen interaction, alpha-linolenic acid metabolism and plant hormone signal transduction. Additionally, 21 delncRNAs and 10 target genes were identified as being involved in alpha-linolenic acid metabolism associated with the biosynthesis of jasmonic acid (JA). Subsequently, we found that GhlncLOX3 might regulate resistance to V. dahliae through modulating the expression of GhLOX3 implicated in JA biosynthesis. Further functional analysis showed that GhlncLOX3-silenced seedlings displayed a reduced resistance to V. dahliae, with down-regulated expression of GhLOX3 and decreased content of JA. Conclusion This study shows the dynamic characteristics of delncRNAs in multiaspect, and suggests that GhlncLOX3-GhLOX3-JA network participates in response to V. dahliae invasion. Our results provide novel insights for genetic improvement of Verticillium wilt resistance in cotton using lncRNAs.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2006
Author(s):  
Hongyu Liu ◽  
Ibrar Muhammad Khan ◽  
Huiqun Yin ◽  
Xinqi Zhou ◽  
Muhammad Rizwan ◽  
...  

The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls’ testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Nicholas W. Mathy ◽  
Olivia Burleigh ◽  
Andrew Kochvar ◽  
Erin R. Whiteford ◽  
Matthew Behrens ◽  
...  

Abstract Background Microglia are resident immunocompetent and phagocytic cells in the CNS. Pro-inflammatory microglia, stimulated by microbial signals such as bacterial lipopolysaccharide (LPS), viral RNAs, or inflammatory cytokines, are neurotoxic and associated with pathogenesis of several neurodegenerative diseases. Long non-coding RNAs (lncRNA) are emerging as important tissue-specific regulatory molecules directing cell differentiation and functional states and may help direct proinflammatory responses of microglia. Characterization of lncRNAs upregulated in proinflammatory microglia, such as NR_126553 or 2500002B13Rik, now termed Nostrill (iNOS Transcriptional Regulatory Intergenic LncRNA Locus) increases our understanding of molecular mechanisms in CNS innate immunity. Methods Microglial gene expression array analyses and qRT-PCR were used to identify a novel long intergenic non-coding RNA, Nostrill, upregulated in LPS-stimulated microglial cell lines, LPS-stimulated primary microglia, and LPS-injected mouse cortical tissue. Silencing and overexpression studies, RNA immunoprecipitation, chromatin immunoprecipitation, chromatin isolation by RNA purification assays, and qRT-PCR were used to study the function of this long non-coding RNA in microglia. In vitro assays were used to examine the effects of silencing the novel long non-coding RNA in LPS-stimulated microglia on neurotoxicity. Results We report here characterization of intergenic lncRNA, NR_126553, or 2500002B13Rik now termed Nostrill (iNOS Transcriptional Regulatory Intergenic LncRNA Locus). Nostrill is induced by LPS stimulation in BV2 cells, primary murine microglia, and in cortical tissue of LPS-injected mice. Induction of Nostrill is NF-κB dependent and silencing of Nostrill decreased inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in BV2 and primary microglial cells. Overexpression of Nostrill increased iNOS expression and NO production. RNA immunoprecipitation assays demonstrated that Nostrill is physically associated with NF-κB subunit p65 following LPS stimulation. Silencing of Nostrill significantly reduced NF-κB p65 and RNA polymerase II recruitment to the iNOS promoter and decreased H3K4me3 activating histone modifications at iNOS gene loci. In vitro studies demonstrated that silencing of Nostrill in microglia reduced LPS-stimulated microglial neurotoxicity. Conclusions Our data indicate a new regulatory role of the NF-κB-induced Nostrill and suggest that Nostrill acts as a co-activator of transcription of iNOS resulting in the production of nitric oxide by microglia through modulation of epigenetic chromatin remodeling. Nostrill may be a target for reducing the neurotoxicity associated with iNOS-mediated inflammatory processes in microglia during neurodegeneration.


2021 ◽  
Vol 17 (10) ◽  
pp. 1993-2002
Author(s):  
Haoran Yu ◽  
Chen Zhang ◽  
Wanpeng Li ◽  
Xicai Sun ◽  
Quan Liu ◽  
...  

To investigate the expression characteristics of long non-coding RNA SNHG14 in nasopharyngeal carcinoma (NPC) and its effects on epithelial-mesenchymal transition and development of nano-coated si-SNHG14 as an anti-tumor agent. The SNHG14 expression in cancerous and adjacent non-cancerous tissues was monitored using reverse transcriptionpolymerase chain reaction (RT-PCR). Gain- and loss-of-function experiments tested the regulation of SNHG14, miR- 5590-3p, and ZEB1 on PD-L1. The binding association between the above three factors was verified using bioinformatics analysis. EMT-related E-cadherin, N-cadherin, and Vimentin were tested using Western blot. Animal experiments in nude mice verified the function of SNHG14 in the EMT of NPC in vivo. The nano-coated si-SNHG14 was developed as an anti-tumor agent and was verified NPC cell in vitro. SNHG14 was upregulated in NPC tissues. Knocking down SNHG14 markedly inhibited the EMT of NPC. Additionally, the expression of ZEB1 was positively related to that of the SNHG14, while it was inversely correlated with that of miR-5590-3p. Moreover, ZEB1 transcription upregulated PD-L1 and promoted the EMT, while SNHG14 could accelerate the EMT of NPC in vivo by regulating the PD-1 and PD-L1. SNHG14-miR-5590- 3p-ZEB1 positively regulated PD-L1 and facilitate the EMT of NPC. Nano-coated si-SNHG14 significantly downregulated PD-L1 expression and decreased EMT.


2018 ◽  
Vol 19 (11) ◽  
pp. 3610 ◽  
Author(s):  
Eveline Ibeagha-Awemu ◽  
Ran Li ◽  
Pier-Luc Dudemaine ◽  
Duy Do ◽  
Nathalie Bissonnette

This study aimed to characterize the long non-coding RNA (lncRNA) expression in the bovine mammary gland and to infer their functions in dietary response to 5% linseed oil (LSO) or 5% safflower oil (SFO). Twelve cows (six per treatment) in mid lactation were fed a control diet for 28 days followed by a treatment period (control diet supplemented with 5% LSO or 5% SFO) of 28 days. Mammary gland biopsies were collected from each animal on day-14 (D-14, control period), D+7 (early treatment period) and D+28 (late treatment period) and were subjected to RNA-Sequencing and subsequent bioinformatics analyses. Functional enrichment of lncRNA was performed via potential cis regulated target genes located within 50 kb flanking regions of lncRNAs and having expression correlation of >0.7 with mRNAs. A total of 4955 lncRNAs (325 known and 4630 novel) were identified which potentially cis targeted 59 and 494 genes in LSO and SFO treatments, respectively. Enrichments of cis target genes of lncRNAs indicated potential roles of lncRNAs in immune function, nucleic acid metabolism and cell membrane organization processes as well as involvement in Notch, cAMP and TGF-β signaling pathways. Thirty-two and 21 lncRNAs were differentially expressed (DE) in LSO and SFO treatments, respectively. Six genes (KCNF1, STARD13, BCL6, NXPE2, HHIPL2 and MMD) were identified as potential cis target genes of six DE lncRNAs. In conclusion, this study has identified lncRNAs with potential roles in mammary gland functions and potential candidate genes and pathways via which lncRNAs might function in response to LSO and SFA.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


2016 ◽  
Vol 28 (12) ◽  
pp. 1873 ◽  
Author(s):  
Xiao-Feng Sun ◽  
Xing-Hong Sun ◽  
Shun-Feng Cheng ◽  
Jun-Jie Wang ◽  
Yan-Ni Feng ◽  
...  

The Notch and transforming growth factor (TGF)-β signalling pathways play an important role in granulosa cell proliferation. However, the mechanisms underlying the cross-talk between these two signalling pathways are unknown. Herein we demonstrated a functional synergism between Notch and TGF-β signalling in the regulation of preantral granulosa cell (PAGC) proliferation. Activation of TGF-β signalling increased hairy/enhancer-of-split related with YRPW motif 2 gene (Hey2) expression (one of the target genes of the Notch pathway) in PAGCs, and suppression of TGF-β signalling by Smad3 knockdown reduced Hey2 expression. Inhibition of the proliferation of PAGCs by N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butylester (DAPT), an inhibitor of Notch signalling, was rescued by both the addition of ActA and overexpression of Smad3, indicating an interaction between the TGF-β and Notch signalling pathways. Co-immunoprecipitation (CoIP) and chromatin immunoprecipitation (ChIP) assays were performed to identify the point of interaction between the two signalling pathways. CoIP showed direct protein–protein interaction between Smad3 and Notch2 intracellular domain (NICD2), whereas ChIP showed that Smad3 could be recruited to the promoter regions of Notch target genes as a transcription factor. Therefore, the findings of the present study support the idea that nuclear Smad3 protein can integrate with NICD2 to form a complex that acts as a transcription factor to bind specific DNA motifs in Notch target genes, such as Hey1 and Hey2, and thus participates in the transcriptional regulation of Notch target genes, as well as regulation of the proliferation of PAGCs.


Sign in / Sign up

Export Citation Format

Share Document