scholarly journals Rebalancing glucolipid metabolism and gut microbiome dysbiosis by nitrate-dependent alleviation of high-fat diet-induced obesity

2020 ◽  
Vol 8 (1) ◽  
pp. e001255
Author(s):  
Linsha Ma ◽  
Liang Hu ◽  
Luyuan Jin ◽  
Jiangyi Wang ◽  
Xiangchun Li ◽  
...  

IntroductionHigh-fat diet (HFD)-induced obesity is accompanied by compromised nitric oxide (NO) signaling and gut microbiome dysregulation. Inorganic dietary nitrate, which acts as a NO donor, exerts beneficial effects on metabolic disorders. Here, we evaluated the effects of dietary nitrate on HFD-induced obesity and provided insights into the underlying mechanism.Research design and methodsTo investigate the preventive effect of dietary nitrate on HFD-induced obesity, C57BL/6 mice were randomly assigned into four groups (n=10/group), including normal control diet group (normal water and chow diet), HFD group (normal water and HFD), HFD+NaNO3 group (water containing 2 mM NaNO3 and HFD), and HFD+NaCl group (water containing 2 mM NaCl and HFD). During the experiment, body weight was monitored and glucolipid metabolism was evaluated. The mechanism underlying the effects of nitrate on HFD-induced obesity was investigated by the following: the NO3--NO2--NO pathway; endothelial NO synthase (eNOS) and cyclic guanosine monophosphate (cGMP) levels; gut microbiota via 16SRNA analysis.ResultsDietary nitrate reduced the body weight gain and lipid accumulation in adipose and liver tissues in HFD-fed mice. Hyperlipidemia and insulin resistance caused by HFD were improved in mice supplemented with nitrate. The level of eNOS was upregulated by nitrate in the serum, liver, and inguinal adipose tissue. Nitrate, nitrite, and cGMP levels were decreased in mice fed on HFD but reversed in the HFD+NaNO3 group. Nitrate also rebalanced the colon microbiota and promoted a normal gut microbiome profile by partially attenuating the impacts of HFD. Bacteroidales S24-7, Alistipes, Lactobacillus, and Ruminococcaceae abundances were altered, and Bacteroidales S24-7 and Alistipes abundances were higher in the HFD+NaNO3 group than that in the HFD group.ConclusionsInorganic dietary nitrate alleviated HFD-induced obesity and ameliorated disrupted glucolipid metabolism via NO3--NO2--NO pathway activation and gut microbiome modulation.

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1216-1216
Author(s):  
Xinge Hu

Abstract Objectives The dietary fat content plays an important role in the regulation of chronic metabolic diseases such as obesity and type 2 diabetes. Here, we tested the impacts of triacylglycerol structure on the body weight gain and food intake of mice in a high-fat diet (HFD) setting. Methods Male C57/BL6J mice at 6 weeks old were fed one of the following three diets for 6 weeks, Teklad Rodent Diet chow diet (number 8640), the chow diet containing 36% (w/w) 1,2-Dipalmitoyl-3-oleoylglycerol (PPO), or the chow diet containing 36% (w/w) 1,3-Dipalmitoyl-2-oleoylglycerol (POP). Each group contained 9 mice, and their food intake and BW were measured daily. The mice were euthanized after 6 weeks (12 weeks old) for tissue sample collection. Results Both high HFD groups had significantly higher BW gain and caloric intakes than the chow diet group. Mice fed the POP diet had a lower percentage of BW gain and consumed less accumulated calories than those fed the PPO diet, as well as a significantly lower liver to BW ratio. Since week 4, the body BW rate of the POP group started to be lower than that of the PPO diet group. Conclusions TAG structures in an HFD setting affect the BW gain rate and obesity in mice. The different structures of fat added to affect the food intake and BW gain differently in an HFD setting. In the future, we would like to compare the changes of the hepatic lipogenesis enzyme in these mice. This will help us to understand how the triacylglycerol structures in the diet affect lipid metabolism in mice. Funding Sources Internal.


2019 ◽  
Author(s):  
Kathleen E. Morrison ◽  
Eldin Jašarević ◽  
Christopher D. Howard ◽  
Tracy L. Bale

AbstractBackgroundDietary effects on the gut microbiome has been shown to play a key role in the pathophysiology of behavioral dysregulation, inflammatory disorders, metabolic syndrome, and obesity. Often overlooked is that experimental diets vary significantly in the proportion and source of dietary fiber. Commonly, treatment comparisons are made between animals that are fed refined diets that lack soluble fiber and animals fed vivarium-provided chow diet that contain a rich source of soluble fiber. Despite the well-established role of soluble fiber on metabolism, immunity, and behavior via the gut microbiome, the extent to which measured outcomes may be driven by differences in dietary fiber is unclear. Further, the significant impact of sex and age in response to dietary challenge is likely important and should also be considered.ResultsWe compared the impact of transitioning young and aged male and female mice from a chow diet to a refined low soluble fiber diet on body weight and gut microbiota. Then, to determine the contribution of dietary fat, we examined the impact of transitioning a subset of animals from refined low fat to refined high fat diet. Serial tracking of body weights revealed that consumption of low fat or high fat refined diet increased body weight in young and aged adult male mice. Young adult females showed resistance to body weight gain, while high fat diet-fed aged females had significant body weight gain. Transition from a chow diet to low soluble fiber refined diet accounted for most of the variance in community structure and composition across all groups. This dietary transition was characterized by a loss of taxa within the phylum Bacteroidetes and a concurrent bloom of Clostridia and Proteobacteria in a sex- and age-specific manner. Most notably, no changes to gut microbiota community structure and composition were observed between mice consuming either low- or high-fat diet, suggesting that transition to the refined diet that lacks soluble fiber is the primary driver of gut microbiota alterations, with limited additional impact of dietary fat on gut microbiota.ConclusionCollectively, our results show that the choice of control diet has a significant impact on outcomes and interpretation related to body weight and gut microbiota. These data also have broad implications for rodent studies that draw comparisons between refined high fat diets and chow diets to examine dietary fat effects on metabolic, immune, behavioral, and neurobiological outcomes.


2019 ◽  
Vol 317 (2) ◽  
pp. E337-E349
Author(s):  
Elizabeth T. Nguyen ◽  
Sarah Berman ◽  
Joshua Streicher ◽  
Christina M. Estrada ◽  
Jody L. Caldwell ◽  
...  

Psychological stress and excess glucocorticoids are associated with metabolic and cardiovascular diseases. Glucocorticoids act primarily through mineralocorticoid (MR) and glucocorticoid receptors (GR), and compounds modulating these receptors show promise in mitigating metabolic and cardiovascular-related phenotypes. CORT118335 (GR/MR modulator) prevents high-fat diet-induced weight gain and adiposity in mice, but the ability of this compound to reverse obesity-related symptoms is unknown. Adult male rats were subcutaneously administered CORT118335 (3, 10, or 30 mg/kg) or vehicle once daily. A 5-day treatment with CORT118335 at 30 mg/kg induced weight loss in rats fed a chow diet by decreasing food intake. However, lower doses of the compound attenuated body weight gain primarily because of decreased calorific efficiency, as there were no significant differences in food intake compared with vehicle. Notably, the body weight effects of CORT118335 persisted during a 2-wk treatment hiatus, suggesting prolonged effects of the compound. To our knowledge, we are the first to demonstrate a sustained effect of combined GR/MR modulation on body weight gain. These findings suggest that CORT118335 may have long-lasting effects, likely due to GR/MR-induced transcriptional changes. Prolonged (18 days) treatment of CORT118335 (10 mg/kg) reversed body weight gain and adiposity in animals fed a high-fat diet for 13 wk. Surprisingly, this occurred despite a worsening of the lipid profile and glucose homeostasis as well as a disrupted diurnal corticosterone rhythm, suggesting GR agonistic effects in the periphery. We conclude that species and tissue-specific targeting may result in promising leads for exploiting the metabolically beneficial aspects of GR/MR modulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haiying Wang ◽  
Qiang Wang ◽  
Cuimei Liang ◽  
Mingxing Su ◽  
Xin Wang ◽  
...  

Objective. To investigate the effects of acupuncture on metabolic health and gut microbiota dysbiosis in diet-induced abdominal obese model. Materials and Methods. Male Sprague-Dawley rats were randomly distributed into normal chow diet (NCD) group and high-fat diet (HFD) group. After 12 weeks of HFD feeding, an abdominal obese rat model was established. The abdominal obese rats were further assigned to acupuncture group (n=7) and nontreated HFD group (n=7). Acupuncture was applied to bilateral GB 26 of rats for 8 weeks. Subsequently, the body weight, waist circumference (WC), visceral fat mass, and liver weight were measured weekly in all rats. Metabolic parameters such as total cholesterol, triglyceride, alanine aminotransferase, aspartate transaminase, and blood glucose were measured by an automatic biochemical analyzer. The serum levels of insulin (INS) were determined using Rat INS ELISA Kit. Analysis of gut microbiota was carried out by 16S rRNA gene sequencing. Results. Acupuncture decreased the body weight, WC, and visceral adipose tissues of HFD-induced abdominal obese rats. In addition, insulin sensitivity, glucose homeostasis, and lipid metabolism were improved by this treatment. Furthermore, electroacupuncture effectively modified the composition of gut microbiota, mainly via decreasing Firmicutes/Bacteroidetes ratio and increasing Prevotella_9 abundance. Conclusions. Electroacupuncture can ameliorate abdominal obesity and prevent metabolic disorders in HFD-induced abdominal obese rats, via the modulation of gut microbiota.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Souravh Bais ◽  
Guru Sewak Singh ◽  
Ramica Sharma

In the present study, the methanolic extract of Moringa oleifera leaves (MEMOL) was evaluated for antiobesity activity in rats. The antiobesity potential of MEMOL was studied against high fat diet-induced obesity (HFD) in rats. In this study, chronic administration of HFD in rats produced hypercholesterolemia (116.2 ± 0.27 mg/dL), which led to an increase in the body weight (225 gr), total cholesterol, triglycerides (263.0 ± 4.69 mg/dL), and attenuation in the levels of HDL (34.51 ± 2.20 mg/dL) as well as changes in body temperature of animals. Treatment of obese rats with MEMOL for 49 days resulted in a significant (P<0.001) change in body weight, total cholesterol, triglycerides, and LDL level along with a significant (P<0.001) increase in body temperature as compared to the HFD-induced obesity. MEMOL treated rats also showed a significant decrease in the level of liver biomarkers, organ weight, and blood glucose level. Further, rats treated with MEMOL (200 mg and 400 mg/kg) show reduced atherogenic index (1.7 ± 0.6 and 0.87 ± 0.76). The results indicate that the rats treated with Moringa oleifera (MO) have significantly attenuated the body weight without any change in the feed intake and also elicited significant thermogenic effect and to act as hypolipidemic and thermogenic property in obesity related disorders.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 99 ◽  
Author(s):  
Wang Ling ◽  
Shungeng Li ◽  
Xingcai Zhang ◽  
Yongquan Xu ◽  
Ying Gao ◽  
...  

: Probiotic dark tea (PDT) is a novel kind of dark tea produced by fresh albino tea leaves and fermented with specific probiotics. Our study demonstrates that PDT can ameliorate high-fat diet-induced overweight and lipid metabolic disorders and shows no acute or subacute toxicity in Sprague-Dawley (SD) rats. Daily intragastric administration of 5% PDT infusion for 14 days caused no obvious effect on general physiological features and behaviors of rats. Oral administration of 1%, 2%, and 3% of PDT infusion for six weeks had no influence on the biochemistry and histopathology of rats’ organs and blood, as well as the body weight and ratios of organ/body weight. To investigate its anti-obesity activity, SD rats were randomly divided into four groups, treated with normal diet + water (Group I), high-fat diet + water (Group II), high-fat diet + 3% traditional dark tea infusion (Group III), high-fat diet + 3% PDT infusion (Group IV). After six weeks, the body weight, serum total triacylglycerol (TG) and serum total cholesterol (TC) levels of rats in Group II were significantly increased and the high-density lipoprotein cholesterol (HDL) levels were significantly decreased compared with those in the other three groups. Both traditional dark tea and PDT treatment effectively counteracted the adverse effect of a high-fat diet in SD rats. These results suggest that PDT could be applied for the prevention of obesity, which ameliorates overweight and lipid metabolic disorders and which shows no acute or subacute toxicity.


2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Qing Liu ◽  
Sang Hyun Kim ◽  
Seon Beom Kim ◽  
Yang Hee Jo ◽  
Eun Sil Kim ◽  
...  

The effect of the extract of Ligustrum lucidum fruits (LFE) and its major secoiridoid (LFS), (8- E)-nüzhenide, on obesity was investigated using high fat-diet (HFD)-induced C58BL/6J obese mice. LFE and LFS were administered at the doses of 300 mg/kg and 30 mg/kg, respectively, for 6 weeks. The anti-obesity activity was evaluated by measuring body weight, epididymal fat and metabolic plasma parameters. On Day 42, the body weight of the LFS-treated group was significantly lower compared with the HFD-treated group. Body weight gain was also reduced by 23.2% and 32.0% in the LFE- and LFS-treated groups, respectively, compared with the HFD group. In addition, the weight of the epididymal fat in the mice was significantly decreased in the HFD+LFS group. The food efficiency ratios (FERs) of the HFD+LFE and HFD+LFS groups were also lower compared with the HFD group with the same food intake. Metabolic parameters that had increased in the HFD group were decreased in the HFD+LFE and HFD+LFS groups. In particular, the increased triglyceride values were significantly reduced in the HFD+LFS group. These results show that treatment with LFE and LFS decreased HFD-induced obesity, mainly by improving metabolic parameters, such as fats and triglycerides. Therefore, LFE and LFS have potential benefits in regulation of obesity.


Endocrinology ◽  
2016 ◽  
Vol 157 (6) ◽  
pp. 2333-2345 ◽  
Author(s):  
Minglan Yang ◽  
Maopei Chen ◽  
Jiqiu Wang ◽  
Min Xu ◽  
Jichao Sun ◽  
...  

A growing body of epidemiological research show that Bisphenol A (BPA) is positively correlated with obesity and metabolic disorders. However, the mechanisms of BPA on adiposity remain largely unknown. In this study, we found that 5-week-old male and female C57BL/6J mice exposed to four dosages of BPA (5, 50, 500, and 5000 μg/kg/d) by oral intake for 30 days showed significantly increased body weight and fat mass in a nonmonotonic dose-dependent manner when fed a chow diet. The effect occurred even at the lowest concentration (5μg/kg/d), lower than the tolerable daily intake of 50 μg/kg/day for BPA. However, no significant difference in body weight and fat mass was observed in either male or female mice fed a high-fat diet, suggesting that BPA may interact with diet in promoting obesity risk. In vitro study showed that BPA treatment drives the differentiation of white adipocyte progenitors from the stromal vascular fraction, partially through glucocorticoid receptor. BPA exposure increased circulating inflammatory factors and the local inflammation in white adipose tissues in both genders fed a chow diet, but not under high-fat diet. We further found that BPA concentration was associated with increased circulating inflammatory factors, including leptin and TNFα, in lean female subjects (body mass index &lt; 23.0 kg/m2) but not in lean male subjects or in both sexes of overweight/obese subjects (body mass index &gt; 25.0 kg/m2). In conclusion, we demonstrated the nonmonotonic dose effects of BPA on adiposity and chronic inflammation in 5-week-old mice, which is related to caloric uptake.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 272-272
Author(s):  
Ting-Chun Lin ◽  
Ying Tang ◽  
Soonkyu Chung ◽  
Young-Cheul Kim ◽  
Zhenhua Liu

Abstract Objectives Colorectal cancer (CRC) is one of the most prevalent cancer worldwide. Evidence from epidemiological studies shows that the incidence rate of CRC among elders with age ≥ 50 years is gradually decreased, whereas the rate continuously rise in adults with age &lt; 50 years. Along with the rise of CRC in young adults, a significantly increasing trend in obesity is also observed in youth. The present study aims to investigate how the early-life nutrition influences the intestinal tumorigenesis later in mouse with an age equivalent to an age &lt; 50 years in human. Methods APC1638N mice (4 weeks of age) were fed a low-fat diet (N = 22; LF: 10% kcal from fat) or a high-fat diet (N = 23; HF: 60% kcal from fat) for 8 weeks, which is equivalent to child/adolescent age in humans. After that, all animals were switched to standard chow diet (LabDiet #5P76) and fed for additional 12 weeks before sacrifice. Tumors were examined and the expression tumorigenic Wnt-signaling downstream genes (Cyclin D1, c-Myc and Axin 2) in the intestine were assessed. Results Our results showed that compared to LF group, the body weight of both male and female mice significantly increased after 8-week HF feeding (P &lt; 0.05). After switching to the standard chow diet for further 12 weeks feeding, the increase of body weight in HF group remained, although the degree of magnitude reduced, and a statistical significance only shown in female mice (P &lt; 0.05). There were a higher tumor incidence (P = 0.051) and tumor multiplicity (P &lt; 0.05) in males than female.  No interactions between gender and diet were observed. The HF group had a higher tumor incidence (P = 0.088) and tumor size (P &lt; 0.05) when compared to the LF group. The expression of Wnt-signaling downstream gene, c-Myc, was significantly increased in the HF group at 24-week of age (P &lt; 0.01). Conclusions A short term of high-fat diet in early life tends to promote intestinal tumorigenesis in adults as indicated by a mild increase in tumor incidence and a significant increase in tumor size. Funding Sources This project was supported by the US Department of Agriculture Hatch funding (#1013548).


2016 ◽  
Vol 3 (3) ◽  
pp. 202-206
Author(s):  
Thatit Nurmawati

Cholesterol is an essential substance for the body. The role of cholesterol as material hormones,cell membranare needed by the body. This conditionchanges into a distrubtion if the cholesterollevels in the blood increase. Weight becomes one of this trigger. The consumption of high-fat foodsincrease weight which resulting in the increase of cholesterol cases. The purpose of this study was todetermine the level of correlations between weight and cholesterol levels after being given a high-fatdiet.The study used rats (Rattus norvegicus) sex male, 16 rats with age between 1-2 months. Rats weightrange between 100-150 gr and in healthy conditions. The giving of high-fat diet were in the form ofchicken feed, duck eggs, goat oil, lard and flour for 8 weeks. The data measurement done by scales andmeasuringcholesterol levels through the end of the tail by means of easy touch. The data analysis weredone to understand level of correlation between variables. The presentation of the data used tables. Theresults showed body weight of rats did not change after administration of a high-fat diet. The cholesterolslevels of the subjects were high. Theadministration of high-fat diet from egg yolk dan goat oilcouldincrease the level of cholesterol. There was a correlation between weight and cholesterol levels afterbeing given a high-fat diet (p <0.5). It was needed to repeatthe measurements to determine changes incholesterol levels and other factors that affect thigh blood to cholesterol levels.


Sign in / Sign up

Export Citation Format

Share Document