scholarly journals Plasma concentrations of second-line antituberculosis drugs in relation to minimum inhibitory concentrations in multidrug-resistant tuberculosis patients in China: a study protocol of a prospective observational cohort study

BMJ Open ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. e023899 ◽  
Author(s):  
Lina Davies Forsman ◽  
Katarina Niward ◽  
Yi Hu ◽  
Rongrong Zheng ◽  
Xubin Zheng ◽  
...  

IntroductionIndividualised treatment through therapeutic drug monitoring (TDM) may improve tuberculosis (TB) treatment outcomes but is not routinely implemented. Prospective clinical studies of drug exposure and minimum inhibitory concentrations (MICs) in multidrug-resistant TB (MDR-TB) are scarce. This translational study aims to characterise the area under the concentration–time curve of individual MDR-TB drugs, divided by the MIC forMycobacterium tuberculosisisolates, to explore associations with markers of treatment progress and to develop useful strategies for clinical implementation of TDM in MDR-TB.Methods and analysisAdult patients with pulmonary MDR-TB treated in Xiamen, China, are included. Plasma samples for measure of drug exposure are obtained at 0, 1, 2, 4, 6, 8 and 10 hours after drug intake at week 2 and at 0, 4 and 6 hours during weeks 4 and 8. Sputum samples for evaluating time to culture positivity and MIC determination are collected at days 0, 2 and 7 and at weeks 2, 4, 8 and 12 after treatment initiation. Disease severity are assessed with a clinical scoring tool (TBscore II) and quality of life evaluated using EQ-5D-5L. Drug concentrations of pyrazinamide, ethambutol, levofloxacin, moxifloxacin, cycloserine, prothionamide and para-aminosalicylate are measured by liquid chromatography tandem-mass spectrometry and the levels of amikacin measured by immunoassay. Dried blood spot on filter paper, to facilitate blood sampling for analysis of drug concentrations, is also evaluated. The MICs of the drugs listed above are determined using custom-made broth microdilution plates and MYCOTB plates with Middlebrook 7H9 media. MIC determination of pyrazinamide is performed in BACTEC MGIT 960.Ethics and disseminationThis study has been approved by the ethical review boards of Karolinska Institutet, Sweden and Fudan University, China. Informed written consent is given by participants. The study results will be submitted to a peer-reviewed journal.Trial registration numberNCT02816931; Pre-results.

2012 ◽  
Vol 56 (5) ◽  
pp. 2612-2618 ◽  
Author(s):  
L. Garcia-Contreras ◽  
Pavan Muttil ◽  
John K. Fallon ◽  
Mohan Kabadi ◽  
Robert Gerety ◽  
...  

ABSTRACTThe global control of tuberculosis (TB) is at risk by the spread of multidrug-resistant TB (MDR TB). Treatment of MDR TB is lengthy and involves injected drugs, such as capreomycin, that have severe side effects. It was previously reported that a single daily dose of inhaled capreomycin had a positive effect on the bacterial burden of TB-infected guinea pigs. The modest effect observed was possibly due to a dose that resulted in insufficient time of exposure to therapeutic systemic and local levels of the drug. In order to determine the length of time that systemic and local drug concentrations are above therapeutic levels during the treatment period, the present study investigated the disposition of capreomycin powders after sequential pulmonary administration of doses of 20 mg/kg of body weight. Capreomycin concentrations in bronchoalveolar lavage fluid and lung tissue of animals receiving a series of one, two, or three doses of capreomycin inhalable powder were significantly higher (50- to 100-fold) at all time points than plasma concentrations at the same time points or those observed in animals receiving capreomycin solution by intramuscular (i.m.) injection (10- to 100-fold higher). Notably, at the end of each dosing period, capreomycin concentrations in the lungs were approximately 100-fold higher than those in plasma and severalfold higher than the MIC, suggesting that sufficient capreomycin remains in the lung environment to killMycobacterium tuberculosis. No accumulation of capreomycin powder was detected in the lungs after 3 pulmonary doses. These results indicate that the systemic disposition of capreomycin after inhalation is the same as when injected i.m. with the advantage that higher drug concentrations are present at all times in the lungs, the primary site of infection.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6281
Author(s):  
Anna Mc Laughlin ◽  
Eduard Schmulenson ◽  
Olga Teplytska ◽  
Sebastian Zimmermann ◽  
Patrick Opitz ◽  
...  

Exposure-efficacy and/or exposure-toxicity relationships have been identified for up to 80% of oral anticancer drugs (OADs). Usually, OADs are administered at fixed doses despite their high interindividual pharmacokinetic variability resulting in large differences in drug exposure. Consequently, a substantial proportion of patients receive a suboptimal dose. Therapeutic Drug Monitoring (TDM), i.e., dosing based on measured drug concentrations, may be used to improve treatment outcomes. The prospective, multicenter, non-interventional ON-TARGET study (DRKS00025325) aims to investigate the potential of routine TDM to reduce adverse drug reactions in renal cell carcinoma patients receiving axitinib or cabozantinib. Furthermore, the feasibility of using volumetric absorptive microsampling (VAMS), a minimally invasive and easy to handle blood sampling technique, for sample collection is examined. During routine visits, blood samples are collected and sent to bioanalytical laboratories. Venous and VAMS blood samples are collected in the first study phase to facilitate home-based capillary blood sampling in the second study phase. Within one week, the drug plasma concentrations are measured, interpreted, and reported back to the physician. Patients report their drug intake and toxicity using PRO-CTCAE-based questionnaires in dedicated diaries. Ultimately, the ON-TARGET study aims to develop a nationwide infrastructure for TDM for oral anticancer drugs.


2020 ◽  
Vol 77 (24) ◽  
pp. 2074-2080
Author(s):  
Amy Legg ◽  
Melanie Halford ◽  
Kate McCarthy

Abstract Purpose Traditionally meropenem has been considered too unstable in solution for continuous infusion. However, in the era of increasing antimicrobial resistance, use of meropenem is becoming more frequently required, and the ability to facilitate its administration via community-based programs would be beneficial. There are some reassuring data about meropenem stability in solution, but data about actual drug exposure in patients and subsequent clinical outcomes are lacking. Summary Here we present a case series of 4 patients at a single tertiary center who received meropenem via continuous infusion coordinated through an outpatient parenteral antimicrobial treatment (OPAT) program. We provide plasma drug concentrations achieved and report on the patients’ clinical progress. All patients achieved drug concentrations of at least 2 times the minimum inhibitory concentration (MIC) while receiving meropenem via continuous infusion and had resolution of their infectious complications. No adverse effects of meropenem continuous infusion were noted. Conclusion Meropenem continuous infusion along with therapeutic drug monitoring was used successfully in a community-based program. Due to interpatient pharmacokinetic variability, we consider meropenem concentration monitoring compulsory during continuous-infusion meropenem therapy.


2012 ◽  
Vol 56 (11) ◽  
pp. 5758-5763 ◽  
Author(s):  
D. H. Vu ◽  
M. S. Bolhuis ◽  
R. A. Koster ◽  
B. Greijdanus ◽  
W. C. M. de Lange ◽  
...  

ABSTRACTLinezolid is a promising antimicrobial agent for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its use is limited by toxicity. Therapeutic drug monitoring (TDM) may help to minimize toxicity while adequate drug exposure is maintained. Conventional plasma sampling and monitoring might be hindered in many parts of the world by logistical problems that may be solved by dried blood spot (DBS) sampling. The aim of this study was to develop and validate a novel method for TDM of linezolid in MDR-TB patients using DBS sampling. Plasma, venous DBS, and capillary DBS specimens were obtained simultaneously from eight patients receiving linezolid. A DBS sampling method was developed and clinically validated by comparing DBS with plasma results using Passing-Bablok regression and Bland-Altman analysis. This study showed that DBS analysis was reproducible and robust. Accuracy and between- and within-day precision values from three validations presented as bias and coefficient of variation (CV) were less than 17.2% for the lower limit of quantification and less than 7.8% for other levels. The method showed a high recovery of approximately 95% and a low matrix effect of less than 8.7%. DBS specimens were stable at 37°C for 2 months and at 50°C for 1 week. The ratio of the concentration of linezolid in DBS samples to that in plasma was 1.2 (95% confidence interval [CI], 1.12 to 1.27). Linezolid exposure calculated from concentrations DBS samples and plasma showed good agreement. In conclusion, DBS analysis of linezolid is a promising tool to optimize linezolid treatment in MDR-TB patients. An easy sampling procedure and high sample stability may facilitate TDM, even in underdeveloped countries with limited resources and where conventional plasma sampling is not feasible.


Author(s):  
Andrew D McCallum ◽  
Henry E Pertinez ◽  
Laura J Else ◽  
Sujan Dilly-Penchala ◽  
Aaron P Chirambo ◽  
...  

Abstract Background Further work is required to understand the intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs. This study aimed to describe the plasma and intrapulmonary pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol, and explore relationships with clinical treatment outcomes in patients with pulmonary tuberculosis. Methods Malawian adults with a first presentation of microbiologically confirmed pulmonary tuberculosis received standard 6-month first-line therapy. Plasma and intrapulmonary samples were collected 8 and 16 weeks into treatment and drug concentrations measured in plasma, lung/airway epithelial lining fluid (ELF), and alveolar cells. Population pharmacokinetic modeling generated estimates of drug exposure (Cmax and AUC) from individual-level post hoc Bayesian estimates of plasma and intrapulmonary pharmacokinetics. Results One-hundred fifty-seven patients (58% HIV coinfected) participated. Despite standard weight-based dosing, peak plasma concentrations of first-line drugs were below therapeutic drug-monitoring targets. Rifampicin concentrations were low in all 3 compartments. Isoniazid, pyrazinamide, and ethambutol achieved higher concentrations in ELF and alveolar cells than plasma. Isoniazid and pyrazinamide concentrations were 14.6-fold (95% CI, 11.2–18.0-fold) and 49.8-fold (95% CI, 34.2–65.3-fold) higher in ELF than plasma, respectively. Ethambutol concentrations were highest in alveolar cells (alveolar cell–plasma ratio, 15.0; 95% CI, 11.4–18.6). Plasma or intrapulmonary pharmacokinetics did not predict clinical treatment response. Conclusions We report differential drug concentrations between plasma and the lung. While plasma concentrations were below therapeutic monitoring targets, accumulation of drugs at the site of disease may explain the success of the first-line regimen. The low rifampicin concentrations observed in all compartments lend strong support for ongoing clinical trials of high-dose rifampicin regimens.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Natasha F. Sabur ◽  
Mantaj S. Brar ◽  
Lisa Wu ◽  
Sarah K. Brode

Abstract Background The World Health Organization recommends intravenous amikacin for the treatment of MDR-TB at a dose of 15 mg/kg. However, higher doses are associated with significant toxicity. Methods Patients with MDR-TB treated at our institution receive amikacin at 8–10 mg/kg, with dose adjustment based on therapeutic drug monitoring. We conducted a retrospective cohort study of patients with MDR-TB who received amikacin between 2010 and 2016. Results Forty-nine patients were included in the study. The median starting dose of amikacin was 8.9 mg/kg (IQR 8, 10), and target therapeutic drug levels were achieved at a median of 12 days (IQR 5, 26). The median duration of amikacin treatment was 7.2 months (IQR 5.7, 8), and median time to sputum culture conversion was 1 month (IQR 1,2). Six patients (12.2%) experienced hearing loss based on formal audiometry testing (95% CI 4.6–24.8%); 22.2% had subjective hearing loss (95% CI 11.2–37.1%) and 31.9% subjective tinnitus (95% CI 19.1–47.1%). Ten patients (23%) had a significant rise in serum creatinine (95% CI 11.8–38.6%), but only 5 patients had a GFR < 60 at treatment completion. 84% of patients had a successful treatment outcome (95% CI 84–99%). Conclusions Low dose amikacin is associated with relatively low rates of aminoglycoside-related adverse events. We hypothesize that low-dose amikacin can be used as a safe and effective treatment for MDR-TB in situations where an adequate regimen cannot be constructed with Group A and B drugs, and where careful monitoring for adverse events is feasible.


2013 ◽  
Vol 57 (6) ◽  
pp. 2613-2619 ◽  
Author(s):  
Ashwin S. Dharmadhikari ◽  
Mohan Kabadi ◽  
Bob Gerety ◽  
Anthony J. Hickey ◽  
P. Bernard Fourie ◽  
...  

ABSTRACTMultidrug-resistant tuberculosis (MDR-TB) threatens global TB control. The lengthy treatment includes one of the injectable drugs kanamycin, amikacin, and capreomycin, usually for the first 6 months. These drugs have potentially serious toxicities, and when given as intramuscular injections, dosing can be painful. Advances in particulate drug delivery have led to the formulation of capreomycin as the first antituberculosis drug available as a microparticle dry powder for inhalation and clinical study. Delivery by aerosol may result in successful treatment with lower doses. Here we report a phase I, single-dose, dose-escalating study aimed at demonstrating safety and tolerability in healthy subjects and measuring pharmacokinetic (PK) parameters. Twenty healthy adults (n= 5 per group) were recruited to self-administer a single dose of inhaled dry powder capreomycin (25-mg, 75-mg, 150-mg, or 300-mg nominal dose) using a simple, handheld delivery device. Inhalations were well tolerated by all subjects. The most common adverse event was mild to moderate transient cough, in five subjects. There were no changes in lung function, audiometry, or laboratory parameters. Capreomycin was rapidly absorbed after inhalation. Systemic concentrations were detected in each dose group within 20 min. Peak and mean plasma concentrations of capreomycin were dose proportional. Serum concentrations exceeded 2 μg/ml (MIC forMycobacterium tuberculosis) following the highest dose; the half-life (t1/2) was 4.8 ± 1.0 h. A novel inhaled microparticle dry powder formulation of capreomycin was well tolerated. A single 300-mg dose rapidly achieved serum drug concentrations above the MIC forMycobacterium tuberculosis, suggesting the potential of inhaled therapy as part of an MDR-TB treatment regimen.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Charalampos Antachopoulos ◽  
Stavroula Ilia ◽  
Paschalis Kadiltzoglou ◽  
Eirini Baira ◽  
Aristides Dokoumetzidis ◽  
...  

ABSTRACT The pharmacokinetics of daptomycin (10 mg/kg once daily) was studied in 4 critically ill pediatric patients aged 8 to 14 yrs. The area under the concentration-time curve from time zero to infinity (AUC 0–∞ ) of plasma concentrations on day 1 ranged between 123.8 to 663.9 μg · h/ml, with lower values observed in septic and burn patients; clearance ranged from 15.1 to 80.7 ml/h/kg. Higher-than-recommended doses of daptomycin may be needed in septic children to ensure optimal drug exposure. Interpatient variability may suggest a role for therapeutic drug monitoring.


2020 ◽  
Vol 24 (11) ◽  
pp. 1151-1155
Author(s):  
M. F. Franke ◽  
C. D. Mitnick

Randomized clinical trials represent the gold standard in therapeutic research. Nevertheless, observational cohorts of patients treated for multidrug-resistant TB (MDR-TB) or rifampin-resistant TB (RR-TB) also play an important role in generating evidence to guide drug-resistant TB care. Generally, summary exposure classifications (e.g., ‘ever vs. never´, ‘exposed at baseline´) have been used to characterize drug exposure in the absence of detailed longitudinal data on MDR-TB regimen changes. These summary classifications, along with an absence of data on covariates that change throughout the course of treatment, constrain researchers´ ability to answer the most relevant questions while accounting for known biases. In this paper, we highlight the importance of regimen changes in improving inference from observational studies of longer MDR-TB treatment regimens, and offer an overview of the data and analytic strategies required to do so.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4820-4820 ◽  
Author(s):  
Carolyn Blasdel ◽  
Yanfeng Wang ◽  
Theodore Lagattuta ◽  
Brian Druker ◽  
Laurie Letvak ◽  
...  

Abstract OBJECTIVES: Imatinib (IM) has demonstrated durable clinical efficacy in the majority of chronic myeloid leukemia (CML) patients. Optimal response may be influenced by multiple innate and external factors, some of which may be controlled by monitoring plasma concentrations of the drug. This abstract reports 6 cases where analyzing plasma IM trough concentrations (Cmin) in patients treated with three commonly used IM doses (400, 600, and 800 mg daily) influenced clinical decision making. METHODS: IM trough blood samples were collected at a time before that day’s IM dosing. Plasma concentrations of IM were determined by a validated LC/MS/MS method. RESULTS: In large population studies of CML patients enrolled in Phase I, II, and III clinical trials, the mean Cmin levels of IM at 400 mg qd, 600 mg qd, and 400 mg bid doses were: 981 (±543, 55%, n=394), 1572 (±1032, 66%, n=14), and 3479 (±1264, 36%, n=14) ng/mL, respectively. Large inter-patient variability was shown at all three doses. Of the 6 cases detailed in the table below, 4 (ID 1, 3, 4, and 5) had dose reduction due to tolerability concerns with subsequent improvement of symptoms following dose adjustment. One patient (ID 2) had a dose increase because of a poor qRT-PCR response. Another (ID 6) had a dose increase due to low plasma IM exposure resulting from drug-drug interaction with phenytoin, a known inducer of CYP3A4 (the major metabolizing isozyme for IM). After dose adjustment, all six patients showed good clinical response to IM treatment. The new mean Cmin value in these patients was 2000 (±471) ng/mL, representing a 24% coefficient of variability. CONCLUSIONS: Although the data is limited, IM drug monitoring proved useful in managing tolerability, lack of efficacy, adherence or potential drug interactions that modulate imatinib drug concentrations. More prospective studies are needed to demonstrate the value of IM drug monitoring in routine clinical practice. Patient ID Age, Sex CML Stage IM Daily Dose 1st Cmin (ng/mL) Reason for Dose Change New Dosing Regimen New Cmin (ng/mL) CP, chronic phase1 1 54, f CP 200 mg bid, Jan 03 3048, Sep 05 transfusion-dependent, anemia, Sep 05 300 mg, Oct 05 2130, Jan 06 2 9, f CP 300 mg, Jan 05 not done qRT-PCR 0.016, Jan 06 400 mg, Jan 06 2341, Jul 06 3 13, f CP 300 mg bid, May 05; 700 mg, Aug 05; 600 mg, Sep 05 1966, Feb 06 nausea, fatigue, arthralgias, myalgia, ongoing 400 mg, Mar 06 1222, May 06 4 67, f CP 400 mg, Feb 05 not done myelosuppression, Mar 05 200 mg, Mar 05 1928, May 06 5 53, f CP 400 mg, Apr 03; 600 mg, May 03; 800 mg, Jul 04 not done inflammatory pulmonary reaction with shortness of breath; dose held, Mar 05 400 mg, Oct 05 2378, May 06 6 73, m CP 350 mg, on phenytoin, Apr 99 35, Jun 99 stopped phenytoin, Jul 99 500 mg, Jul 99 not done; qRT-PCR negative, Jul 06


Sign in / Sign up

Export Citation Format

Share Document