scholarly journals Immune cell and tumor cell-derived CXCL10 is indicative of immunotherapy response in metastatic melanoma

2021 ◽  
Vol 9 (9) ◽  
pp. e003521
Author(s):  
Robin Reschke ◽  
Jovian Yu ◽  
Blake A Flood ◽  
Emily F Higgs ◽  
Ken Hatogai ◽  
...  

A T cell-inflamed tumor microenvironment is characterized by the accumulation and local activation of CD8+ T cells and Bat3-lineage dendritic cells, which together are associated with clinical response to anti-programmed cell death protein 1 (anti-PD-1)-based immunotherapy. Preclinical models have demonstrated a crucial role for the chemokine CXCL10 in the recruitment of effector CD8+ T cells into the tumor site, and a chemokine gene signature is also seen in T cell-inflamed tumors from patients. However, the cellular source of CXCL10 in human solid tumors is not known. To identify the cellular source of CXCL10 we analyzed 22 pretreatment biopsy samples of melanoma metastases from patients who subsequently underwent checkpoint blockade immunotherapy. We stained for CD45+ and Sox10+ cells with multiparameter immunofluorescence staining, and RNA in situ hybridization technology was used in concert to identify CXCL10 transcripts. The results were correlated with the expression levels of CXCL10 transcripts from bulk RNA sequencing and the best overall response to immune checkpoint inhibition (anti-PD-1 alone or with anti-CTLA-4) in the same patients. We identified CD45+ cells as the major cellular source for CXCL10 in human melanoma metastases, with additional CXCL10 production seen by Sox10+ cells. Up to 90% of CD45+ cells and up to 69% of Sox10+ cells produced CXCL10 transcripts. The CXCL10 staining result was consistent with the level of CXCL10 expression determined by bulk RNA sequencing. The percentages of CD45+ CXCL10+ cells and Sox10+ CXCL10+ cells independently predicted response (p<0.001). The average number of transcripts per cell correlated with the CD45+ cell infiltrate (R=0.37). Immune cells and melanoma cells produce CXCL10 in human melanoma metastases. Intratumoral CXCL10 is a positive prognostic factor for response to immunotherapy, and the RNAscope technique is achievable using paraffin tissue. Strategies that support effector T cell recruitment via induction of CXCL10 should be considered as a mechanism-based intervention to expand immunotherapy efficacy.

Author(s):  
Yifang Sun ◽  
Jian Wu ◽  
Yonggang Yuan ◽  
Yumin Lu ◽  
Ming Luo ◽  
...  

BackgroundCD8+ T cells work as a key effector of adaptive immunity and are closely associated with immune response for killing tumor cells. It is crucial to understand the role of tumor-infiltrating CD8+ T cells in uveal melanoma (UM) to predict the prognosis and response to immunotherapy.Materials and MethodsSingle-cell transcriptomes of UM with immune-related genes were combined to screen the CD8+ T-cell-associated immune-related genes (CDIRGs) for subsequent analysis. Next, a prognostic gene signature referred to tumor-infiltrating CD8+ T cells was constructed and validated in several UM bulk RNA sequencing datasets. The risk score of UM patients was calculated and classified into high- or low-risk subgroup. The prognostic value of risk score was estimated by using multivariate Cox analysis and Kaplan–Meier survival analysis. Moreover, the potential ability of gene signature for predicting immunotherapy response was further explored.ResultsIn total, 202 CDIRGs were screened out from the single-cell RNA sequencing of GSE139829. Next, a gene signature containing three CDIRGs (IFNGR1, ANXA6, and TANK) was identified, which was considered as an independent prognostic indicator to robustly predict overall survival (OS) and metastasis-free survival (MFS) of UM. In addition, the UM patients were classified into high- and low-risk subgroups with different clinical characteristics, distinct CD8+ T-cell immune infiltration, and immunotherapy response. Gene set enrichment analysis (GSEA) showed that immune pathways such as allograft rejection, inflammatory response, interferon alpha and gamma response, and antigen processing and presentation were all positively activated in low-risk phenotype.ConclusionOur work gives an inspiration to explain the limited response for the current immune checkpoint inhibitors to UM. Besides, we constructed a novel gene signature to predict prognosis and immunotherapy responses, which may be regarded as a promising therapeutic target.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 502-502 ◽  
Author(s):  
Yawara Kawano ◽  
Michele Moschetta ◽  
Katsutoshi Kokubun ◽  
Pavlo Lukyanchykov ◽  
Esilida Sula Karreci ◽  
...  

Abstract Introduction. Growing evidence suggests that immune cells that reside within the tumor microenvironment are dysregulated and functionally impaired, leading to defective anti-tumor immunity of the host. One of the major immunosuppressive mechanisms during tumor progression is expansion of regulatory immune cells. Here, we analyzed the immune cells within the bone marrow (BM) and the peripheral blood (PB) of 2 immunocompetent multiple myeloma (MM) mouse models. We next studied the role of regulatory T cells (Tregs) in MM pathogenesis. Materials and methods. To study the immune cell populations of the BM and PB, we used two immuncompetent mouse models and transplanted VK*MYC cells or 5TGM1 cells into C57BL/6 and C57BL/Kalwrij mice respectively. The immune cell populations and checkpoint receptor expressions were analyzed by CyTOF mass cytometer or flow-cytometry. Treg induction assay was performed in vitro to study the mechanism of Treg increase in the BM of myeloma injected mice. CD4+ CD25- cells were obtained from C57BL/Kalwrij mice and were co-cultured with 5TGM1 cells or B cells from C57BL/Kalwrij mice in vitro. Treg induction was compared by flow-cytometry. Transplantable VK*MYC cells were injected into "depletion of regulatory T cell" (DEREG) mice, which expresses a simian diphtheria toxin (DT) receptor-enhanced GFP fusion protein under the control of the FOXP3 gene locus, or their wild type littermates. DT injection into these mice leads to depletion of Tregs as previously described (J Exp Med. 2007; 204: 57-63). DT was given once every week for a total 3 times i.p to the DEREG mice or the littermate controls to specifically deplete Tregs and to study the role of Tregs during MM progression. Tregs (CD4+ FOXP3-GFP+ cells) were sorted from VK*MYC injected mice or non-injected DEREG mice BM using FACSAria cell sorter. Cells isolated were subjected to RNA sequencing. Gene Set Enrichment Analysis (GSEA) was performed to define differences in molecular signatures between MM-associated and normal Tregs. Results. The Treg proportion was significantly increased within the CD4+ T cells in the BM of myeloma cell injected mice from the early stage of disease compared to control mice, while in the PB, the increase was observed only at the late stages of disease progression. The effector T cell (Teff)/Treg ratio was significantly decreased in the BM at the end-stage myeloma bearing mice (P<0.01). Checkpoint related molecules (PD-1, LAG-3 and Tim-3) on Tregs and Teffs were up-regulated at the protein level in the BM of myeloma injected mice compared to control (P<0.01). These data indicate the activation of Tregs and decrease of Teff activity, leading to suppression of anti-myeloma T cell activity in the MM BM. Under in vitro co-culture conditions, 5TGM1 cells induced a significant increase in the number of Tregs from non-Treg CD4+ T cells compared to controls (P<0.01). 5TGM1 cell-induced Tregs presented with enhanced ki-67 expression, thus suggesting the ability of MM cells to induce Treg proliferation. Additionally, the trans-well co-culture experiment showed that the major mechanism for Treg induction by 5TGM1 was by direct contact with T cells rather than secreting factors. Significant increase in survival was observed in the VK*MYC injected DEREG mice under Treg depletion compared to the DEREG mice without Treg depletion and wild type littermates under DT treatment (P<0.001). The Treg depleted DEREG mice were accompanied with an increase of Teffs (P<0.01), indicating recovery of anti-myeloma T cell activity. RNA sequencing of BM Tregs from VK*MYC injected mice showed increased expression of immune checkpoint related molecules and increased Treg effector molecules (IL-10, Granzyme B) compared to BM Tregs from control mice, indicating a more functionally active phenotype of VK*MYC associated Tregs. GSEA showed an enrichment of genes involved in type-1 interferon signaling in VK*MYC associated Tregs. Conclusions. We used 2 immunocompetent MM mouse models to study the characterization and significance of Tregs in MM progression. CyTOF analysis and RNA sequencing data indicated Treg activation in the MM BM microenvironment. The Treg in vivo depletion experiment showed that Tregs have a significant role in MM progression. These data indicate that immunotherapy targeting Tregs may represent a novel therapeutic strategy for MM. Studies are ongoing to understand the roles of Tregs in human MM patients. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Gang Xu ◽  
Furong Qi ◽  
Hanjie Li ◽  
Qianting Yang ◽  
Haiyan Wang ◽  
...  

Abstract Understanding the mechanism that leads to immune dysfunction in severe coronavirus disease 2019 (COVID-19) is crucial for the development of effective treatment. Here, using single-cell RNA sequencing, we characterized the peripheral blood mononuclear cells (PBMCs) from uninfected controls and COVID-19 patients and cells in paired broncho-alveolar lavage fluid (BALF). We found a close association of decreased dendritic cells (DCs) and increased monocytes resembling myeloid-derived suppressor cells (MDSCs), which correlated with lymphopenia and inflammation in the blood of severe COVID-19 patients. Those MDSC-like monocytes were immune-paralyzed. In contrast, monocyte-macrophages in BALFs of COVID-19 patients produced massive amounts of cytokines and chemokines, but secreted little interferons. The frequencies of peripheral T cells and NK cells were significantly decreased in severe COVID-19 patients, especially for innate-like T and various CD8+ T cell subsets, compared to healthy controls. In contrast, the proportions of various activated CD4+ T cell subsets among the T cell compartment, including Th1, Th2, and Th17-like cells were increased and more clonally expanded in severe COVID-19 patients. Patients’ peripheral T cells showed no sign of exhaustion or augmented cell death, whereas T cells in BALFs produced higher levels of IFNG, TNF, CCL4, CCL5, etc. Paired TCR tracking indicated abundant recruitment of peripheral T cells to the severe patients’ lung. Together, this study comprehensively depicts how the immune cell landscape is perturbed in severe COVID-19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander J. Dwyer ◽  
Jacob M. Ritz ◽  
Jason S. Mitchell ◽  
Tijana Martinov ◽  
Mohannad Alkhatib ◽  
...  

AbstractThe notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with standard approaches. Optical microscopy is an important and widely used method to evaluate immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, attempts at quantitative measurements require significant time for manual analysis and often involve sophisticated and expensive imaging software. In this study, we developed and illustrate here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing β cell and glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our image analysis procedure allows for direct quantification and statistical determination of islet area and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be combined with other markers of inflammation or activation in future studies.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A637-A637
Author(s):  
Manoj Chelvanambi ◽  
Ronald Fecek ◽  
Jennifer Taylor ◽  
Walter Storkus

BackgroundThe degree of immune infiltration in tumors, especially CD8+ T cells, greatly impacts patient disease course and response to interventional immunotherapy. Hence, enhancement of TIL prevalence is a preferred clinical endpoint, one that may be achieved via administration of agents that normalize the tumor vasculature (VN) leading to improved immune cell recruitment and/or that induce the development of local tertiary lymphoid structures (TLS) within the tumor microenvironment (TME).MethodsLow-dose STING agonist ADU S-100 (5 μg/mouse) was delivered intratumorally to established s.c. B16.F10 melanomas on days 10, 14 and 17 post-tumor inoculation under an IACUC-approved protocol. Treated and control, untreated tumors were isolated at various time points to assess transcriptional changes associated with VN and TLS formation via qPCR, with corollary immune cell composition changes determined using flow cytometry and immunofluorescence microscopy. In vitro assays were performed on CD11c+ BMDCs treated with 2.5 μg/mL ADU S-100 (vs PBS control) and associated transcriptional changes analyzed via qPCR or profiled using DNA microarrays. For TCRβ-CDR3 analyses, CDR3 was sequenced from gDNA isolated from enzymatically digested tumors and splenocytes.ResultsWe report that activation of STING within the TME leads to slowed melanoma growth in association with increased production of angiostatic factors including Tnfsf15 (Vegi), Cxcl10 and Angpt1, and TLS inducing factors including Ccl19, Ccl21, Lta, Ltb and Tnfsf14 (Light). Therapeutic responses from intratumoral STING activation were characterized by increased vascular normalization (VN), enhanced tumor infiltration by CD8+ T cells and CD11c+ DCs and local TLS neo-genesis, all of which were dependent on host expression of STING. Consistent with a central role for DC in TLS formation, ex vivo ADU S-100-activated mCD11c+ DCs also exhibited upregulated expression of TLS promoting factors including lymphotoxin-α (LTA), IL-36, inflammatory chemokines and type I interferons. TLS formation was associated with the development of a therapeutic TIL TCR repertoire enriched in T cell clonotypes uniquely detected within the tumor but not the peripheral circulation in support or local T cell cross-priming within the TME.ConclusionsOur data support the premise that i.t. delivery of STING agonist promotes a pro-inflammatory TME in support of VN and TLS formation, leading to the local expansion of unique TIL repertoire in association with superior anti-melanoma efficacy.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1365.2-1365
Author(s):  
X. Fan ◽  
D. Guo ◽  
C. T. Ng ◽  
A. Law ◽  
Z. Y. Poon ◽  
...  

Background:Patients with systemic lupus erythematosus (SLE) suffer from severe morbidity and mortality1-4, either from the disease itself or from side effects of immunosuppression5. Discovery of novel effective therapies with less toxicity is an urgent need.Objectives:The aim of this study is to elucidate the therapeutic potential and working mechanism of cytokine CXCL5 in lupus mice.Methods:Treatment with CXCL5, bone marrow (BM)-MSCs, standard of care (SOC) with combination of methylprednisolone and cyclophosphamide was given to 16-week-old Faslprmice. Mice were monitored for 10 weeks. Splenic immune cell subsets were measured by flow cytometry. Circulating cytokine and immunoglobulin were detected by Luminex technology. Renal function was evaluated by urinary spot albumin creatinine ratio. In situ renal immune cell infiltration and complement 3 deposition were detected by Haematoxylin and Eosin (H&E) staining and immunohistochemistry.Results:CXCL5 demonstrated consistent and potent immunosuppressive capacity in suppressing SLE with reduced autoantibody secretion, lymphoproliferation and preserved kidney function. With further exploration, we proved that CXCL5 reduced the proliferation of helper T cells (TH1 and TH2) in thein vitrofunctional assay. When we administrated CXCL5 to lupus mice, it promoted the proliferation of regulatory T cells and reduced the proliferation of TH17 cells, macrophages and neutrophils. Multiple proinflammatory cytokines including IL-2, IL-6, IL-12, IL-17A, KC/CXCL1, MIP-1β/CCL4 and TNF-α were also reduced. When combined with SOC, CXCL5 boosted its therapeutic effect and reduced the relevant indices of disease activity. When we correlated the effect of four different treatment groups (CXCL5, BM-MSCs, SOC, and CXCL5 plus SOC) on mice survival and target cell changes, we found that TH17 cells were the key effector cells involved in the pathogenesis of SLE.Conclusion:These findings demonstrated that CXCL5 dampens inflammation in the pre-clinical model of systemic lupus erythematosus via the orchestral effect of regulating neutrophil trafficking and suppressing helper T cell-mediated immune response. Administrating exogenous CXCL5 might be an attractive option to treat patients with lupus.References:[1]Ji S, Guo Q, Han Y, Tan G, Luo Y, Zeng F. Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3beta signaling pathway in T cells from systemic lupus erythematosus mice.Cell Physiol Biochem.2012;29(5-6):705-712.[2]Peng SL. Altered T and B lymphocyte signaling pathways in lupus.Autoimmun Rev.2009;8(3):179-183.[3]Ferucci ED, Johnston JM, Gaddy JR, et al. Prevalence and incidence of systemic lupus erythematosus in a population-based registry of American Indian and Alaska Native people, 2007-2009.Arthritis Rheumatol.2014;66(9):2494-2502.[4]Jakes RW, Bae SC, Louthrenoo W, Mok CC, Navarra SV, Kwon N. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality.Arthritis Care Res (Hoboken).2012;64(2):159-168.[5]Sattwika PD, Mustafa R, Paramaiswari A, Herningtyas EH. Stem cells for lupus nephritis: a concise review of current knowledge.Lupus.2018;27(12):1881-1897.Acknowledgments:The work was supported by SMART II Centre Grant (NMRC/CG/M011/2017_SGH) and SingHealth Foundation (SHF/FG638P/2016).Disclosure of Interests:None declared


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A197-A197
Author(s):  
Brendan Horton ◽  
Brendan Horton ◽  
Duncan Morgan ◽  
Noor Momin ◽  
Vidit Bhandarkar ◽  
...  

BackgroundTumor infiltrating T cells (TIL) are highly correlated with response to checkpoint blockade immunotherapy (CBT) in melanoma. However, in non-small cell lung cancer (NSCLC), 61% of patients have TIL, but only 32% respond to CBT. It is unknown how these T cell-inflamed tumors are resistant to CBT. Understanding and overcoming this resistance would greatly increase the number of cancer patients who benefit from CBT.MethodsTo understand lung-specific anti-tumor immune responses, a NSCLC cell line derived from an autochthonous murine lung cancer (KP cell line) was transplanted into syngeneic C57BL/6 mice subcutaneously or intravenously. To study antigen-specific responses, the KP cell line was engineered with SIY and 2C TCR transgenic T cells, which are specific for SIY, were adoptively transferred into tumor-bearing animals.ResultsSubcutaneous KP tumors responded to CBT (aCTLA-4 and aPD-L1) with significant tumor regression while lung KP tumors were CBT resistant. Immunohistochemistry found that this was not due to lack of T cell infiltration, as lung tumors contained 10-fold higher numbers of CD8+ TIL than subcutaneous tumors. Single cell RNA sequencing of TIL uncovered that CD8+ TIL in lung lesions had blunted effector molecule expression that correlated with a lack of IL-2 signaling. Adoptive transfer of naïve, tumor-reactive 2C T cells resulted in equally robust T cell proliferation in both the inguinal and mediastinal lymph nodes (LNs). However, RNA sequencing of adoptively transferred 2C T cells isolated 3-days after transfer from draining LNs identified that T cells activated in the mediastinal LN had reduced levels of IL-2 signaling and blunted effector functions early during priming. Flow cytometry confirmed that T cells primed in the mediastinal LNs did not express CD25, GZMB, or IFN-g, while T cells in inguinal LNs upregulated all three of these effector molecules. Delivery of IL-2 and IL-12 during priming was sufficient to restore effector molecule expression on 2C T cells in mediastinal LNs. Analysis of published patient data identified that a subset of lung cancer patients showed a sizable population of CD8+ TIL with low IL-2 signaling and low expression of effector molecules, including common targets of CBT.ConclusionsImmunotherapy resistance in T cell-inflamed tumors is due to defective CD8+ T cell effector differentiation. IL-2-based therapies could enhance differentiation of functional CD8+ effector T cells and could turn immunotherapy resistant tumors to immunotherapy sensitive tumors. This is the first mechanistic study providing evidence for a distinct type of T cell dysfunction resistant to current CBT.Ethics ApprovalThis study was approved by MIT’s Committee on Animal Care, protocol number 0220-006-23.


Author(s):  
M. Schoemmel ◽  
◽  
H. Loeser ◽  
M. Kraemer ◽  
S. Wagener-Ryczek ◽  
...  

Abstract Introduction The inflammatory microenvironment has emerged as one of the focuses of cancer research. Little is known about the immune environment in esophageal adenocarcinoma (EAC) and possible tumor-escape mechanisms to avoid immune cell attack. Patients and methods We measured T cell inflammation (CD3, CD8) in the microenvironment using a standardized software-based evaluation algorithm considering different predefined tumor areas as well as expression of MHC class 1 and PD-L1 on 75 analyzable primarily resected and locally advanced (≥ pT2) EACs. We correlated these findings statistically with clinical data. Results Patients with high amounts of T cell infiltration in their tumor center showed a significant survival benefit of 41.4 months compared to 16.3 months in T cell poor tumors (p = 0.025), although CD3 fails to serve as an independent prognostic marker in multivariate analysis. For the invasion zone, a correlation between number of T-cells and overall survival was not detectable. Loss of MHC1 protein expression on tumor cells was seen in 32% and PD-L1 expression using the combined positive score (CPS) in 21.2%. Most likely due to small numbers of cases, both markers are not prognostically relevant, even though PD-L1 expression correlates with advanced tumor stages. Discussion Our analyses reveal an outstanding, though not statistically independent, prognostic relevance of T-cell-rich inflammation in our group of EACs, in particular driven by the tumor center. For the first time, we describe that the inner part of the invasion zone in EACs shows significantly fewer T-cells than other tumor segments and is prognostically irrelevant. We also demonstrate that the loss of antigen presenting ability via MHC1 downregulation by the carcinoma cells is a common escape mechanism in EACs. Future work will need to show whether tumors with MHC class 1 loss respond less well to immunotherapy.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A576-A576
Author(s):  
Pravesh Gupta ◽  
Minghao Dang ◽  
Krishna Bojja ◽  
Huma Shehwana ◽  
Tuan Tran ◽  
...  

BackgroundBrain immunity is largely myeloid cell dominated rather than lymphoid cells in healthy and diseased state including malignancies of glial origins called as gliomas. Despite this skewed myeloid centric immune contexture, immune checkpoint and T cell based therapeutic modalities are generalizably pursued in gliomas ignoring the following facts i) T cells are sparse in tumor brain ii) glioma patients are lymphopenic iii) gliomas harbor abundant and highly complex myeloid cell repertoire. We recognized these paradoxes pertaining to fundamental understanding of constituent immune cells and their functional states in the tumor immune microenvironment (TIME) of gliomas, which remains elusive beyond a priori cell types and/or states.MethodsTo dissect the TIME in gliomas, we performed single-cell RNA-sequencing on ~123,000 tumor-derived sorted CD45+ leukocytes from fifteen genomically classified patients comprising IDH-mutant primary (IMP; n=4), IDH-mutant recurrent (IMR; n=4), IDH-wild type primary (IWP; n=3), or IDH-wild type recurrent (IWR; n=4) gliomas (hereafter referred as glioma subtypes) and two non-glioma brains (NGBs) as controls.ResultsUnsupervised clustering analyses delineated predominant 34-myeloid cell clusters (~75%) over 28-lymphoid cell clusters (~25%) reflecting enormous heterogeneity within and across glioma subtypes. The glioma immune diversity spanned functionally imprinted phagocytic, antigen-presenting, hypoxia, angiogenesis and, tumoricidal myeloid to classical cytotoxic lymphoid subpopulations. Specifically, IDH-mutant gliomas were predominantly enriched for brain-resident microglial subpopulations in contrast to enriched bone barrow-derived infiltrates in IDH-wild type especially in a recurrent setting. Microglia attrition in IWP and IWR gliomas were concomitant with invading monocyte-derived cells with semblance to dendritic cell and macrophage like transcriptomic features. Additionally, microglial functional diversification was noted with disease severity and mostly converged to inflammatory states in IWR gliomas. Beyond dendritic cells, multiple antigen-presenting cellular states expanded with glioma severity especially in IWP and IWR gliomas. Furthermore, we noted differential microglia and dendritic cell inherent antigen presentation axis viz, osteopontin, and classical HLAs in IDH subtypes and, glioma-wide non-PD1 checkpoints associations in T cells like Galectin9 and Tim-3. As a general utility, our immune cell deconvolution approach with single-cell-matched bulk RNA sequencing data faithfully resolved 58-cell states which provides glioma specific immune reference for digital cytometry application to genomics datasets.ConclusionsAltogether, we identified prognosticator immune cell-signatures from TCGA cohorts as one of many potential immune responsiveness applications of the curated signatures for basic and translational immune-genomics efforts. Thus, we not only provide an unprecedented insight of glioma TIME but also present an immune data resource that can be exploited for immunotherapy applications.Ethics ApprovalThe brain tumor/tissue samples were collected as per MD Anderson internal review board (IRB)-approved protocol numbers LAB03-0687 and, LAB04-0001. One non-tumor brain tissue sample was collected from patient undergoing neurosurgery for epilepsy as per Baylor College of Medicine IRB-approved protocol number H-13798. All experiments were compliant with the review board of MD Anderson Cancer Center, USA.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal


Sign in / Sign up

Export Citation Format

Share Document