scholarly journals 936 Stromal remodeling regulates dendritic cell abundance in the tumor microenvironment

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A982-A982
Author(s):  
Athanasios Papadas ◽  
Gauri Deb ◽  
Adam Officer ◽  
Chelsea Hope ◽  
Philip Emmerich ◽  
...  

BackgroundStimulatory dendritic cells (SDC), enriched within the Batf3-DC lineage (also known as conventional type 1 DC, cDC1), engage in productive interactions with CD8+ effectors along tumor-stroma boundaries. This puzzling pattern of T-cell-DC localization has been interpreted as ”tumor-exclusion”, limiting anti-tumor immunity. To understand this paradox, we hypothesized that dynamic matrix remodeling at the invasive margin generates unique activation and cell-fate cues critical for Batf3-DC homeostasis.MethodsWe studied immunocompetent tumor models of lung carcinoma, breast carcinoma, melanoma and multiple myeloma. For mechanistic experiments, we generated novel Vcan-targeted models through CRISPR-Cas9 targeting. We delineated DC subsets through multi-parametric flow cytometry and tumor immune contexture through mass cytometry. Batf3-DC cellular models included MutuDC1940 immortalized DC and iCD103 primary cells. TCGA data were mined for human validation.ResultsWe find that CD8+ T cells massively infiltrate tumor matrices undergoing robust matrix proteoglycan versican (VCAN) proteolysis, an essential organ-sculpting modification in development and adult tissue-plane forging. Across 7591 samples from 20 TCGA cancer types, a significant-positive correlation between VCAN substrate expression and Batf3-DC score was observed, suggesting that the VCAN pathway may regulate Batf3-DC across several cancer types. Experimental Vcan depletion in the tumor microenvironment was detrimental for Batf3-DC. Batf3-DC abundance was restored through the VCAN N-terminal fragment (matrikine) versikine, physiologically generated through ADAMTS protease activity in remodeled stroma. In addition to Batf3-DC expansion, versikine resulted in G-MDSC contraction as well as the emergence of an atypical innate lymphoid (NK/ILC1) subset expressing cytotoxicity receptors, low IFNgamma and robust pro-survival GM-CSF. Despite broad intratumoral IRF8 induction (10-100-fold), adoptive transfer of pre-DC into versikine-replete microenvironments did not influence their differentiation choice between Batf3-DC and cDC2. Instead, versikine delivered a distinct Batf3-DC activation signal characterized by non-TLR maturation as well as downregulation of TGFbeta and Wnt signaling. In vivo, versikine promoted Batf3-DC abundance through NK cells but independently of stromal TLR2 or CD44. Versikine sensitized immune-evasive tumors to STING agonist immunotherapy in a Batf3-DC dependent manner and promoted antigen-specific CD8+ responses. Versikine-DC signatures correlated with CD8+ T cell scores in human lung cancers.ConclusionsWe demonstrate that dynamic extracellular matrix remodeling controls Batf3-DC abundance in the tumor microenvironment. N-terminal proteolysis of the matrix proteoglycan versican (VCAN), releases a bioactive fragment (matrikine), versikine, that is remarkably necessary and sufficient for Batf3-DC accumulation. Versikine orchestrates a multi-lineage network that regulates Batf3-DC activation and survival at matrix-remodeling interfaces. Therapeutic harnessing of matrix-Batf3-DC cross-talk sensitizes immune-evasive tumors to immunotherapy.AcknowledgementsWe acknowledge support by the National Cancer Institute (R01CA252937 and U01CA196406), the American Cancer Society (127508-RSG-15-045-01-LIB), the Leukemia and Lymphoma Society (6551–18), the UW Trillium Myeloma Fund and the Robert J. Shillman Foundation.Ethics ApprovalLaboratory animal work was performed under IACUC-approved protocols #M5476 and #S19109 in the University of Wisconsin-Madison and University of California, San Diego respectively.

Author(s):  
Kosuke Sasaki ◽  
Shigetsugu Takano ◽  
Satoshi Tomizawa ◽  
Yoji Miyahara ◽  
Katsunori Furukawa ◽  
...  

Abstract Background Recent studies indicate that complement plays pivotal roles in promoting or suppressing cancer progression. We have previously identified C4b-binding protein α-chain (C4BPA) as a serum biomarker for the early detection of pancreatic ductal adenocarcinoma (PDAC). However, its mechanism of action remains unclear. Here, we elucidated the functional roles of C4BPA in PDAC cells and the tumor microenvironment. Methods We assessed stromal C4BPA, the C4BPA binding partner CD40, and the number of CD8+ tumor-infiltrating lymphocytes in resected human PDAC tissues via immunohistochemical staining. The biological functions of C4BPA were investigated in peripheral blood mononuclear cells (PBMCs) and human PDAC cell lines. Mouse C4BPA (mC4BPA) peptide, which is composed of 30 amino acids from the C-terminus and binds to CD40, was designed for further in vitro and in vivo experiments. In a preclinical experiment, we assessed the efficacy of gemcitabine plus nab-paclitaxel (GnP), dual immune checkpoint blockades (ICBs), and mC4BPA peptide in a mouse orthotopic transplantation model. Results Immunohistochemical analysis revealed that high stromal C4BPA and CD40 was associated with favorable PDAC prognosis (P=0.0005). Stromal C4BPA strongly correlated with the number of CD8+ tumor-infiltrating lymphocytes (P=0.001). In in vitro experiments, flow cytometry revealed that recombinant human C4BPA (rhC4BPA) stimulation increased CD4+ and CD8+ T cell numbers in PBMCs. rhC4BPA also promoted the proliferation of CD40-expressing PDAC cells. By contrast, combined treatment with gemcitabine and rhC4BPA increased PDAC cell apoptosis rate. mC4BPA peptide increased the number of murine T lymphocytes in vitro and the number of CD8+ tumor-infiltrating lymphocytes surrounding PDAC tumors in vivo. In a preclinical study, GnP/ICBs/mC4BPA peptide treatment, but not GnP treatment, led to the accumulation of a greater number of CD8+ T cells in the periphery of PDAC tumors and to greater tumor regression than did control treatment. Conclusions These findings demonstrate that the combination of GnP therapy with C4BPA inhibits PDAC progression by promoting antitumor T cell accumulation in the tumor microenvironment.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Li-Hao Huang ◽  
Bernd H Zinselmeyer ◽  
Chih-Hao Chang ◽  
Brian T Saunders ◽  
Brian S Kim ◽  
...  

HDL is cardioprotective, but plasma HDL levels do not necessarily predict cardiovascular outcomes. The major HDL-associated protein apoA-I picks up its cholesterol from cells within extravascular compartments to return it to plasma and then bile. Yet, tools are lacking to quantify the important step of HDL transit through extravascular spaces. Here, we developed recombinant photoactivatable apoA-I to quantify endogenous HDL recirculation. Using the tool, we studied HDL passage through skin in healthy mice versus those with experimental psoriasis, wherein collagen density increased in the skin in a CD4 + T cell-dependent manner. In control mice, photoactivated HDL mobilized to plasma within 2 h but was retained in collagen-enriched skin of mice with psoriasis. These data suggest that cardiovascular comorbidity in psoriasis might be linked to T cell-mediated structural changes in skin that impedes systemic recirculation of HDL. This new tool is likely to find wide application in HDL research.


2020 ◽  
Vol 21 (2) ◽  
pp. 472 ◽  
Author(s):  
Yuri Cho ◽  
Min Ji Park ◽  
Koeun Kim ◽  
Jae-Young Park ◽  
Jihye Kim ◽  
...  

Abstract: Background: Crosstalk between tumors and their microenvironment plays a crucial role in the progression of hepatocellular carcinoma (HCC). However, there is little existing information about the key signaling molecule that modulates tumor-stroma crosstalk. Methods: Complementary DNA (cDNA) microarray analysis was performed to identify the key molecule in tumor-stroma crosstalk. Subcutaneous xenograft in vivo murine model, immunoblotting, immunofluorescence, and real-time polymerase chain reaction using HCC cells and tissues were performed. Results: The key molecule, regenerating gene protein-3A (REG3A), was most significantly enhanced when coculturing HCC cells and activated human hepatic stellate cells (HSCs) (+8.2 log) compared with monoculturing HCC cells using cDNA microarray analysis. Downregulation of REG3A using small interfering RNA significantly decreased the proliferation of HSC-cocultured HCC cells in vitro and in vivo, and enhanced deoxycholic acid-induced HCC cell apoptosis. Crosstalk-induced REG3A upregulation was modulated by platelet-derived growth factor ββ (PDGF-ββ) in p42/44-dependent manner. REG3A mRNA levels in human HCC tissues were upregulated 1.8-fold compared with non-tumor tissues and positively correlated with PDGF-ββ levels. Conclusions: REG3A/p42/44 pathway/PDGF-ββ signaling plays a significant role in hepatocarcinogenesis via tumor-stroma crosstalk. Targeting REG3A is a potential novel therapeutic target for the management of HCCs by inhibiting crosstalk between HCC cells and HSCs.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4342-4346 ◽  
Author(s):  
Claudiu V. Cotta ◽  
Zheng Zhang ◽  
Hyung-Gyoon Kim ◽  
Christopher A. Klug

Abstract Progenitor B cells deficient in Pax5 are developmentally multipotent, suggesting that Pax5 is necessary to maintain commitment to the B-cell lineage. Commitment may be mediated, in part, by Pax5 repression of myeloid-specific genes. To determine whether Pax5 expression in multipotential cells is sufficient to restrict development to the B-cell lineage in vivo, we enforced expression of Pax5 in hematopoietic stem cells using a retroviral vector. Peripheral blood analysis of all animals reconstituted with Pax5-expressing cells indicated that more than 90% of Pax5-expressing cells were B220+ mature B cells that were not malignant. Further analysis showed that Pax5 completely blocked T-lineage development in the thymus but did not inhibit myelopoiesis or natural killer (NK) cell development in bone marrow. These results implicate Pax5 as a critical regulator of B- versus T-cell developmental fate and suggest that Pax5 may promote commitment to the B-cell lineage by mechanisms that are independent of myeloid gene repression.


Author(s):  
Libuše Janská ◽  
Libi Anandi ◽  
Nell C. Kirchberger ◽  
Zoran S. Marinkovic ◽  
Logan T. Schachtner ◽  
...  

There is an urgent need for accurate, scalable, and cost-efficient experimental systems to model the complexity of the tumor microenvironment. Here, we detail how to fabricate and use the Metabolic Microenvironment Chamber (MEMIC) – a 3D-printed ex vivo model of intratumoral heterogeneity. A major driver of the cellular and molecular diversity in tumors is the accessibility to the blood stream that provides key resources such as oxygen and nutrients. While some tumor cells have direct access to these resources, many others must survive under progressively more ischemic environments as they reside further from the vasculature. The MEMIC is designed to simulate the differential access to nutrients and allows co-culturing different cell types, such as tumor and immune cells. This system is optimized for live imaging and other microscopy-based approaches, and it is a powerful tool to study tumor features such as the effect of nutrient scarcity on tumor-stroma interactions. Due to its adaptable design and full experimental control, the MEMIC provide insights into the tumor microenvironment that would be difficult to obtain via other methods. As a proof of principle, we show that cells sense gradual changes in metabolite concentration resulting in multicellular spatial patterns of signal activation and cell proliferation. To illustrate the ease of studying cell-cell interactions in the MEMIC, we show that ischemic macrophages reduce epithelial features in neighboring tumor cells. We propose the MEMIC as a complement to standard in vitro and in vivo experiments, diversifying the tools available to accurately model, perturb, and monitor the tumor microenvironment, as well as to understand how extracellular metabolites affect other processes such as wound healing and stem cell differentiation.


1998 ◽  
Vol 187 (10) ◽  
pp. 1611-1621 ◽  
Author(s):  
Sarah E. Townsend ◽  
Christopher C. Goodnow

Antigen-specific B cells are implicated as antigen-presenting cells in memory and tolerance responses because they capture antigens efficiently and localize to T cell zones after antigen capture. It has not been possible, however, to visualize the effect of specific B cells on specific CD4+ helper T cells under physiological conditions. We demonstrate here that rare T cells are activated in vivo by minute quantities of antigen captured by antigen-specific B cells. Antigen-activated B cells are helped under these conditions, whereas antigen-tolerant B cells are killed. The T cells proliferate and then disappear regardless of whether the B cells are activated or tolerant. We show genetically that T cell activation, proliferation, and disappearance can be mediated either by transfer of antigen from antigen-specific B cells to endogenous antigen-presenting cells or by direct B–T cell interactions. These results identify a novel antigen presentation route, and demonstrate that B cell presentation of antigen has profound effects on T cell fate that could not be predicted from in vitro studies.


2007 ◽  
Vol 97 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Melissa M. Grant ◽  
Nalini Mistry ◽  
Joseph Lunec ◽  
Helen R. Griffiths

To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 μm) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.


Author(s):  
Pollyana Ribeiro Castro ◽  
Lucas Felipe Fernandes Bittencourt ◽  
Sébastien Larochelle ◽  
Silvia Passos Andrade ◽  
Charles Reay Mackay ◽  
...  

Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) was shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the GPR43 gene (GPR43-KO) and the wild-type (WT). We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycans production, collagen deposition and α-SMA expression in vivo, besides to increase TGF-b1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblasts migration, and TGF-β1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anti-cancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S165-S166
Author(s):  
E Becker ◽  
M Wiendl ◽  
A Schulz-Kuhnt ◽  
I Atreya ◽  
R Atreya ◽  
...  

Abstract Background Vedolizumab has emerged as an important pillar of treatment in inflammatory bowel disease (IBD). However, for unknown reasons, not all patients respond to therapy. Earlier clinical studies suggested decreased response rates in the highest compared with medium dosage groups. Interestingly, vedolizumab has been shown to inhibit the homing of both regulatory (Treg) and effector T (Teff) cells and previous data from our group suggested different effect sizes in both populations. Thus, we hypothesised that the non-linear exposure–efficacy correlation might be explained by dose-dependent differential effects of vedolizumab on Treg and Teff homing. Therefore, we studied functional effects of different vedolizumab exposure levels on Treg and Teff cell trafficking. Methods The α4β7 expression on different human T-cell subsets as well as the binding characteristics of vedolizumab to these cells at different exposure levels was analysed via flow cytometry. Functional effects of different vedolizumab concentrations on the adhesion of Tregs and Teffs to mucosal addressin cell adhesion molecule 1 (MAdCAM-1) were analysed using dynamic in vitro adhesion assays, transmigration assays and in vivo homing assays in a humanised mouse model. The in vivo binding of vedolizumab to Tregs and Teffs in patients receiving therapy was quantified and correlated with the corresponding serum levels. Results We found a preferential binding of vedolizumab to Tregs at an exposure with 0.4 µg/ml vedolizumab that shifted to a preferential binding to Teffs at an exposure with 10 µg/ml. Further increase of vedolizumab to 50 µg/ml led to equal binding to Tregs and Teffs (Figure 1). Consistently, at 10 µg/ml, dynamic adhesion of Tregs to MAdCAM-1 was increased compared with Teffs, but no difference was noted at 50 µg/ml. Additionally, a higher number of Treg compared with Teff cells were able to transmigrate in a MAdCAM-1-dependent manner at a concentration of 10 µg/ml vedolizumab. Preliminary data from homing experiments in a humanised mouse model and from IBD patients treated with vedolizumab support the notion that differential binding preferences depending on the exposure level can also be observed in vivo. Conclusion Our findings support a dose-dependent differential binding of vedolizumab to different T-cell subpopulations and suggest that an optimal ‘window’ of exposure exists, in which effects on Teffs predominate over Tregs. While offering a potential explanation for earlier findings in dose-ranging studies, our data might lay the basis for the establishment of individualised dose optimisation in IBD patients.


2020 ◽  
Vol 15 (7) ◽  
pp. 1934578X2093522
Author(s):  
Yanchu Li ◽  
Lu Chen ◽  
Rong Pu ◽  
Lu Zhou ◽  
Xufeng Zhou ◽  
...  

Herbal medicine can present an alternative way of treating liver cancer. Here, we explored a matrine- and sophoridine-containing herbal compound medicine (AH-05) extracted from Adenophora capillaris, Sophora flavescens, Astragalus, and other plants. H22 and HepG2 cell models, as well as an H22 xenograft model, were established. Cell proliferation and apoptosis were measured in vitro, and tumor volume and weight were observed in vivo. The activation of AKT/mTOR and nuclear factor-κB (NF-κB) pathways in tumor cells and the polarization of CD4/CD8 T cells in the spleen were tested. To assess safety, hematological toxicity and pathology of the liver, kidney, spleen, and intestine were evaluated. AH-05 inhibited cell viability in a dose- and time-dependent manner. In vivo, tumor volume and weight were reduced, and the activation of NF-κB p50, NF-κB p65, AKT, p-AKT Ser473, and mTOR was suppressed. In addition, AH-05 promoted CD4+ T cell polarization in the spleen. With regard to safety, slight intestinal mucosa edema was observed, but no severe pathological or hematological toxicity was detected. AH-05 exhibited its therapeutic effects against liver cancer by regulating the AKT/mTOR and NF-κB signaling pathways, and the immune environment, by promoting CD4+ T cell polarization in the spleen. Thus, AH-05 represents a potential supplementary herbal compound medicine for liver cancer.


Sign in / Sign up

Export Citation Format

Share Document