PLOD2 promotes aerobic glycolysis and cell progression in colorectal cancer by upregulating HK2

2020 ◽  
Vol 98 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Wenwu Du ◽  
Ning Liu ◽  
Yafeng Zhang ◽  
Xi Liu ◽  
Yuanhong Yang ◽  
...  

The purpose of this study was to characterize the expression of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2), a membrane-bound homodimeric enzyme that specifically hydroxylates lysine in the telopeptide of procollagens, and assess the clinical significance of PLOD2 in colorectal cancer (CRC). Our results show that PLOD2 is highly expressed in CRC tumor tissues and cell lines, both at the mRNA and protein levels. Next, we found that PLOD2 was positively correlated with tumor grade (P = 0.001), T stage (P = 0.001), N stage (P < 0.001), and an advanced TNM stage (P < 0.001). Knockdown of PLOD2 attenuated CRC cell proliferation, migration, and invasiveness, in vitro. Our analysis of the mechanism behind the effects of PLOD2 suggests that PLOD2 affected glycolysis by regulating the expression of hexokinase 2 (HK2). HK2 reverses the inhibitory effects of PLOD2 knockdown in CRC. Furthermore, the data suggest that PLOD2 regulates the expression of HK2 via the STAT3 signaling pathway. Survival analysis revealed that high expression levels of PLOD2 (HR = 3.800, P < 0.001) and HK2 expression (HR = 10.222, P < 0.001) correlated with the overall survival rate. After analyzing their expression and correlation, PLOD2 positively correlated with HK2 (r = 0.590, P < 0.001). Our findings have revealed that PLOD2 is a novel regulatory factor in glucose metabolism, exerted via controlling HK2 expression in CRC cells, suggesting PLOD2 as a promising therapeutic target for CRC treatment.

2021 ◽  
Author(s):  
Ke Xu ◽  
Kai Fang ◽  
Yueping Zhan ◽  
Yuqian Wang ◽  
Chengqi Wu ◽  
...  

Abstract Background Anti-angiogenesis therapy has increasingly become an important strategy for the treatment of colorectal cancer. Recent studies have shown that tumor microenvironment (TME) promotes tumour angiogenesis. Bufalin is an active compound whose anti-tumor efficacy has been proven by previous studies. However, there are very few studies on the anti-angiogenic effects of bufalin. Methods Herein, human umbilical vein endothelial cells (HUVEC) tube formation, migration and adhesion test were used to assess angiogenesis in vitro. Western blot and quantitative PCR were used to detect relevant protein levels and the expressions of mRNAs. Subcutaneous xenograft tumor model and hepatic metastasis model in mice were established to investigate the influence of bufalin on angiogenesis-mediated by TME in vivo. Results We found that the angiogenesis mediated by tumor microenvironment cells was significantly inhibited in the present of bufalin. The results demonstrated that the pro-angiogenic gene in HUVEC such as VEGF, PDGFA, E-selectin and P-selectin were downregulated by bufalin, and the downregulation was regulated by inhibiting the STAT3 pathway. Overexpression STAT3 could reverse the inhibitory effect of bufalin on angiogenesis. What is more, few reduction of angiogenesis when bufalin directly acted on tumor microenvironment cells. Conclusion Our findings demonstrate that bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signaling pathway of vascular endothelial cells, which reveals that bufalin may be used as a new anti-angiogenic adjuvant therapy medicine in the treatment of colorectal cancer.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Eryan Kong ◽  
Sonja Sucic ◽  
Francisco J. Monje ◽  
Sonali N. Reisinger ◽  
Giorgia Savalli ◽  
...  

Abstract Experimental evidence suggests a role for the immune system in the pathophysiology of depression. A specific involvement of the proinflammatory cytokine interleukin 6 (IL6) in both, patients suffering from the disease and pertinent animal models, has been proposed. However, it is not clear how IL6 impinges on neurotransmission and thus contributes to depression. Here we tested the hypothesis that IL6-induced modulation of serotonergic neurotransmission through the STAT3 signaling pathway contributes to the role of IL6 in depression. Addition of IL6 to JAR cells, endogenously expressing SERT, reduced SERT activity and downregulated SERT mRNA and protein levels. Similarly, SERT expression was reduced upon IL6 treatment in the mouse hippocampus. Conversely, hippocampal tissue of IL6-KO mice contained elevated levels of SERT and IL6-KO mice displayed a reduction in depression-like behavior and blunted response to acute antidepressant treatment. STAT3 IL6-dependently associated with the SERT promoter and inhibition of STAT3 blocked the effect of IL6 in-vitro and modulated depression-like behavior in-vivo. These observations demonstrate that IL6 directly controls SERT levels and consequently serotonin reuptake and identify STAT3-dependent regulation of SERT as conceivable neurobiological substrate for the involvement of IL6 in depression.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1016
Author(s):  
Antonios N. Gargalionis ◽  
Kostas A. Papavassiliou ◽  
Athanasios G. Papavassiliou

Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor that has been firmly associated with colorectal cancer (CRC) initiation and development. STAT3 mediates key inflammatory mechanisms in colitis-associated cancer, becomes excessively activated in CRC, and enhances cancer cell proliferation, tumor growth, angiogenesis, invasion, and migration. STAT3 hyperactivation in malignant cells, surrounding immune cells and cancer-associated fibroblasts, mediates inhibition of the innate and adaptive immunity of the tumor microenvironment, and, therefore, tumor evasion from the immune system. These features highlight STAT3 as a promising therapeutic target; however, the mechanisms underlying these features have not been fully elucidated yet and STAT3 inhibitors have not reached the clinic in everyday practice. In the present article, we review the STAT3 signaling network in CRC and highlight the current notion for the design of STAT3-focused treatment approaches. We also discuss recent breakthroughs in combination immunotherapy regimens containing STAT3 inhibitors, therefore providing a new perception for the clinical application of STAT3 in CRC.


2019 ◽  
Vol 26 (4) ◽  
pp. 524-533 ◽  
Author(s):  
Aiping Wang ◽  
Song Deng ◽  
Xi Chen ◽  
Chang Yu ◽  
Qun Du ◽  
...  

Abstract Background Interleukin (IL)-6/signal transducers and activators of transcription 3 (STAT3) signaling plays an important role in the development of colitis-associated colorectal cancer (CAC). The mechanism of CAC formation remains unclear, and the relationship between miRNAs and the IL-6/STAT3 signaling pathway in the development of CAC is not well understood. In this study, we investigated the relationship between miR-29a-5p and the IL-6/STAT3 signaling pathway in the development of CAC and alterations in 10-11 translocations (TETs) regulated by this network. Methods miR-29a-5p was screened in a CAC mouse model by high-throughput microarray analysis and investigated in human colorectal cancer tissue samples and colon cell lines by quantitative reverse transcription polymerase chain reaction (Q-RTPCR). The expression of miR-29a and TETs was detected by Q-RTPCR, and the expression of STAT3/P-STAT3 and TET3 was detected via Western blot assay. The expression of TET1 and 5-hydroxymethylcytosine (5hmC) was detected through immunofluorescence. Results Our results showed that miR-29a-5p was significantly upregulated and was accompanied by STAT3 activation in the colon tissues of CAC mouse and human colorectal cancer tissues, as compared with normal colon tissues. In contrast, the levels of TETs and 5hmC were decreased. In vitro, overexpression of miR-29a-5p in colonic cell lines (HCT-116 and IEC-6) and RAW264.7 cells increased STAT3 expression, but decreased that of TET3, TET1, and 5hmC. miR-29a-5p downregulation in HCT-116 and IEC-6 cell lines could rescue the expression of STAT3 and TET3. Notably, STAT3 activation induced by IL-6 upregulated miR-29a-5p expression and reduced TET expression in vitro, although STAT3 inhibitor treatment downregulated miR-29a-5p expression, which was induced by IL-6. Conclusions Our studies showed that tumor development occurred with inflammation. The miR-29a-5p/STAT3 signaling axis could play an important role in the development of CAC, and the miR-29a-5p/STAT3 positive feedback loop may amplify the effects of inflammation, lead to decreased levels of TET and 5hmC, and eventually lead to the development of CAC.


2022 ◽  
Vol 11 ◽  
Author(s):  
Wenjin Qiu ◽  
Xiaomin Cai ◽  
Kaya Xu ◽  
Shibin Song ◽  
Zumu Xiao ◽  
...  

Regenerating liver phosphatase 1 (PRL1) is an established oncogene in various cancers, although its biological function and the underlying mechanisms in glioblastoma multiforme (GBM) remain unclear. Here, we showed that PRL1 was significantly upregulated in glioma tissues and cell lines, and positively correlated with the tumor grade. Consistently, ectopic expression of PRL1 in glioma cell lines significantly enhanced their tumorigenicity and invasion both in vitro and in vivo by promoting epithelial-mesenchymal transition (EMT). Conversely, knocking down PRL1 blocked EMT in GBM cells, and inhibited their invasion, migration and tumorigenic growth. Additionally, PRL1 also stabilized Snail2 through its deubiquitination by activating USP36, thus revealing Snail2 as a crucial mediator of the oncogenic effects of PRL1 in GBM pathogenesis. Finally, PRL1 protein levels were positively correlated with that of Snail2 and predicted poor outcome of GBMs. Collectively, our data support that PRL1 promotes GBM progression by activating USP36-mediated Snail2 deubiquitination. This novel PRL1/USP36/Snail2 axis may be a promising therapeutic target for glioblastoma.


Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Huang ◽  
Yichao Hou ◽  
Xiaoling Weng ◽  
Wenjing Pang ◽  
Lidan Hou ◽  
...  

AbstractExploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis–mediated aerobic glycolysis pathway.


2021 ◽  
Vol 16 (1) ◽  
pp. 523-536
Author(s):  
Minghao Li ◽  
Jianbin Zhuang ◽  
Di Kang ◽  
Yuzhuo Chen ◽  
Weiliang Song

Abstract Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been implicated in cancer biology. The purpose of the current work is to investigate the precise parts of circRNA centrosome and spindle pole-associated protein 1 (circ-CSPP1) in the progression of CRC. Our data showed that circ-CSPP1 was significantly overexpressed in CRC tissues and cells. The knockdown of circ-CSPP1 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and weakened tumor growth in vivo. circ-CSPP1 directly targeted miR-431, and circ-CSPP1 knockdown modulated CRC cell progression in vitro via upregulating miR-431. Moreover, LIM and SH3 protein 1 (LASP1) was a functional target of miR-431 in modulating CRC cell malignant progression. Furthermore, circ-CSPP1 in CRC cells functioned as a posttranscriptional regulator on LASP1 expression by targeting miR-431. Our present study identified the oncogenic role of circ-CSPP1 in CRC partially by the modulation of the miR-431/LASP1 axis, providing evidence for circ-CSPP1 as a promising biomarker for CRC management.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lanlan Xi ◽  
Quanlin Liu ◽  
Wei Zhang ◽  
Linshan Luo ◽  
Jingfeng Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. Methods 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. Results The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3′ untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. Conclusion Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.


Author(s):  
Kai Jiang ◽  
Haiyan Chen ◽  
Yimin Fang ◽  
Liubo Chen ◽  
Chenhan Zhong ◽  
...  

Abstract Background Angiopoietin-like protein 1 (ANGPTL1) has been proved to suppress tumor metastasis in several cancers. However, its extracellular effects on the pre-metastatic niches (PMNs) are still unclear. ANGPTL1 has been identified in exosomes, while its function remains unknown. This study was designed to explore the role of exosomal ANGPTL1 on liver metastasis in colorectal cancer (CRC). Methods Exosomes were isolated by ultracentrifugation. The ANGPTL1 level was detected in exosomes derived from human CRC tissues. The effects of exosomal ANGPTL1 on CRC liver metastasis were explored by the intrasplenic injection mouse model. The liver PMN was examined by vascular permeability assays. Exosomal ANGPTL1 localization was validated by exosome labeling. The regulatory mechanisms of exosomal ANGPTL1 on Kupffer cells were determined by RNA sequencing. qRT-PCR, Western Blot, and ELISA analysis were conducted to examine gene expressions at mRNA and protein levels. Results ANGPTL1 protein level was significantly downregulated in the exosomes derived from CRC tumors compared with paired normal tissues. Besides, exosomal ANGPTL1 attenuated liver metastasis and impeded vascular leakiness in the liver PMN. Moreover, exosomal ANGPTL1 was mainly taken up by KCs and regulated the KCs secretion pattern, enormously decreasing the MMP9 expression, which finally prevented the liver vascular leakiness. In mechanism, exosomal ANGPTL1 downregulated MMP9 level in KCs by inhibiting the JAK2-STAT3 signaling pathway. Conclusions Taken together, exosomal ANGPTL1 attenuated CRC liver metastasis and impeded vascular leakiness in the liver PMN by reprogramming the Kupffer cell and decreasing the MMP9 expression. This study suggests a suppression role of exosomal ANGPTL1 on CRC liver metastasis and expands the approach of ANGPTL1 functioning.


Sign in / Sign up

Export Citation Format

Share Document