scholarly journals Particle breakage in granular materials — a conceptual framework

2018 ◽  
Vol 55 (5) ◽  
pp. 710-719 ◽  
Author(s):  
Jean-Marie Konrad ◽  
Younes Salami

A simple, yet complete framework is introduced with the aim of modelling grain breakage in soils and crushable granular materials. The evolution of grain breakage is measured using a specific parameter of the grain-size distribution. The evolution of this new breakage parameter is related to the applied mechanical work, which allows the predictions to be independent of the stress paths. The correlation function proposed is trilinear, and is capable of describing the initiation, development, and stabilization of breakage. The initial state, coupled with three additional parameters, is used to calibrate this function. The three parameters are related to a grain specific quantity representing the strength of the particles that form the granular medium. The theory of fractal fragmentation is adopted, and the final state is considered to be unique and described by a single parameter: the fractal dimension. When tested against experimental results, this model was able to correctly predict the crushable behavior of a sand.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 645
Author(s):  
Igor Litovchenko ◽  
Sergey Akkuzin ◽  
Nadezhda Polekhina ◽  
Kseniya Almaeva ◽  
Evgeny Moskvichev

The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


Author(s):  
Adriana Keating ◽  
Karen Campbell ◽  
Michael Szoenyi ◽  
Colin McQuistan ◽  
David Nash ◽  
...  

Abstract. Given the increased attention on resilience-strengthening in international humanitarian and development work, there is a growing need to invest in its measurement and the overall accountability of "resilience strengthening" initiatives. We present a framework and tool for measuring community level resilience to flooding, built around the five capitals (5Cs) of the Sustainable Livelihoods Framework. At the time of writing the tool is being tested in 75 communities across 10 countries. Currently 88 potential sources of resilience are measured at the baseline (initial state) and endline (final state) approximately two years later. If a flood occurs in the community during the study period, resilience outcome measures are recorded. By comparing pre-flood characteristics to post flood outcomes, we aim to empirically verify sources of resilience, something which has never been done in this field. There is an urgent need for the continued development of theoretically anchored, empirically verified and practically applicable disaster resilience measurement frameworks and tools so that the field may: a) deepen understanding of the key components of "disaster resilience" in order to better target resilience enhancing initiatives, and b) enhance our ability to benchmark and measure disaster resilience over time, and compare how resilience changes as a result of different capacities, actions and hazards.


Author(s):  
JUN KONG ◽  
DIANXIANG XU ◽  
XIAOQIN ZENG

Poor design has been a major source of software security problems. Rigorous and designer-friendly methodologies for modeling and analyzing secure software are highly desirable. A formal method for software development, however, often suffers from a gap between the rigidity of the method and the informal nature of system requirements. To narrow this gap, this paper presents a UML-based framework for modeling and analyzing security threats (i.e. potential security attacks) rigorously and visually. We model the intended functions of a software application with UML statechart diagrams and the security threats with sequence diagrams, respectively. Statechart diagrams are automatically converted into a graph transformation system, which has a well-established theoretical foundation. Method invocations in a sequence diagram of a security threat are interpreted as a sequence of paired graph transformations. Therefore, the analysis of a security threat is conducted through simulating the state transitions from an initial state to a final state triggered by method invocations. In our approach, designers directly work with UML diagrams to visually model system behaviors and security threats while threats can still be rigorously analyzed based on graph transformation.


2020 ◽  
Vol 245 ◽  
pp. 06005
Author(s):  
Marcin Słodkowski ◽  
Patryk Gawryszewski ◽  
Dominik Setniewski

In this work, we are focusing on assessing the contribution of the initial-state fluctuations of heavy ion collision in the hydrodynamic simulations. We are trying to answer the question of whether the hydrodynamic simulation retains the same level of fluctuation in the final-state as for the initial stage. In another scenario, the hydrodynamic simulations of the fluctuation drowns in the final distribution of expanding matter. For this purpose, we prepared sufficient relativistic hydrodynamic program to study A+A interaction which allows analysing initial-state fluctuations in the bulk nuclear matter. For such an assumption, it is better to use high spatial resolution. Therefore, we applied the (3+1) dimensional Cartesian coordinate system. We implemented our program using parallel computing on graphics cards processors - Graphics Processing Unit (GPU). Simulations were carried out with various levels of fluctuation in initial conditions using the average method of events coming from UrQMD models. Energy density distributions were analysed and the contribution of fluctuations in initial conditions was assessed in the hydrodynamic simulation.


Author(s):  
A. R. Balasubramanian ◽  
Javier Esparza ◽  
Mikhail Raskin

AbstractIn rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number B such that all initial configurations of the protocol with at least B agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper [17], Horn and Sangnier prove that the cut-off problem is equivalent to the Petri net reachability problem for protocols with a leader, and in "Image missing" for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to "Image missing" and "Image missing" , respectively. The problem of lowering these upper bounds or finding matching lower bounds is left open. We show that the cut-off problem is "Image missing" -complete for leaderless protocols, "Image missing" -complete for symmetric protocols with a leader, and in "Image missing" for leaderless symmetric protocols, thereby solving all the problems left open in [17].


2018 ◽  
Vol 5 (5) ◽  
Author(s):  
Nils O. Abeling ◽  
Lorenzo Cevolani ◽  
Stefan Kehrein

In non-relativistic quantum theories the Lieb-Robinson bound defines an effective light cone with exponentially small tails outside of it. In this work we use it to derive a bound for the correlation function of two local disjoint observables at different times if the initial state has a power-law decay. We show that the exponent of the power-law of the bound is identical to the initial (equilibrium) decay. We explicitly verify this result by studying the full dynamics of the susceptibilities and correlations in the exactly solvable Luttinger model after a sudden quench from the non-interacting to the interacting model.


1993 ◽  
Vol 07 (09n10) ◽  
pp. 1779-1788 ◽  
Author(s):  
JASON A.C. GALLAS ◽  
HANS J. HERRMANN ◽  
STEFAN SOKOLOWSKI

When sand or other granular materials are shaken, poured or sheared many intriguing phenomena can be observed. We will model the granular medium by a packing of elastic spheres and simulate it via Molecular Dynamics. Dissipation of energy and shear friction at collisions are included. The onset of fluidization can be determined and is in good agreement with experiments. On a vibrating plate we observe the formation of convection cells due to walls or amplitude modulations. Density and velocity profiles on conveyor belts are measured and the influence of an obstacle discussed. We mention various types of rheology for flow down an inclined chute or through a pipe and outflowing containers.


2021 ◽  
Vol 17 ◽  
pp. 244-252
Author(s):  
Anna Tarasenko ◽  
Oleksandr Karelin ◽  
Manuel Gonzalez Hernández ◽  
Oleksandr Barabash

In this paper, we consider systems with one resource, which can be in several states. The states differ significantly in their processes of mortality, reproduction and mutual influence. For instance, infected elements can have a higher mortality rate than healthy and recovered ones. For cyclic models, in which the initial state of the system coincides with the final state, balance relations are found. They represent a system with functional operators with shift and integrals with degenerate kernels. Modified Fredholm method, proposed in previous works to solve the integral equations of the second type with degenerate kernels and shifts, is applied. Equilibrium position of a system with a three-state resource is found.


Sign in / Sign up

Export Citation Format

Share Document