Paleolimnology of a fluvial lake downstream of Lake Superior and the industrialized region of Sault Saint Marie

2005 ◽  
Vol 62 (11) ◽  
pp. 2586-2608 ◽  
Author(s):  
Euan D Reavie ◽  
John A Robbins ◽  
Eugene F Stoermer ◽  
Marianne SV Douglas ◽  
Gail E Emmert ◽  
...  

A paleolimnological study was undertaken to describe the past environment of the St. Mary's River downstream of Lake Superior. Two sediment cores were obtained from the deepest part of Lake George, a fluvial lake in the river system. Rigorous analyses of radionuclides (210Pb, 226Ra, and 137Cs) and chemical properties provided an accurate sediment chronology. More than 450 diatom species from 47 genera were identified. Diatom and geochemical data indicated gradual environmental change in response to anthropogenic activities, including logging, hydrologic manipulation, and steel, leather, and paper industries. A decline in water quality occurred gradually from the late 1800s through the 20th century in response to human activities, as was apparent from an increase in eutrophic–planktonic diatom taxa. A decline in benthic taxa and an increase in contaminant metals were also contemporaneous with impacts during the 20th century. Subfossil diatoms were similar to those recorded in paleolimnological investigations from the Great Lakes. However, diatom profiles indicate that the algal supply from upstream Lake Superior has been minimal and that the cores mainly reflect environmental characteristics of the near-upstream environment. Despite stochastic sedimentary regimes and complex habitats in the lotic system, this study reinforces the value of river paleolimnology at carefully selected sites.

2020 ◽  
Vol 4 (1) ◽  
pp. 14-28
Author(s):  
S. K. Gaikwad ◽  
N. D. Pathan ◽  
N. S. Bansode ◽  
S. P. Gaikwad ◽  
Y. P. Badhe ◽  
...  

To study the chemistry of major ion in groundwater from Vel (Velu) River basin, sixty (60) samples of dug wells and bore wells were collected and analyzed using standard techniques given by APHA. It shows order of dominance for cations, Na+ > Ca2+ > Mg2+ > K+ and in anionic concentration as HCO3- > Cl- > SO42- in groundwater. The pH of groundwater is slightly alkaline (range: pH 7.0 - 8.1), while average values of Electrical Conductivity (EC) is about 2641 µS/cm indicating high mineralization of groundwater. In general, the cationic concentration (Na+, K+, Ca2+ and Mg2+) of the groundwater increase in the downstream side (from Northwest to South east), suggesting geological control on the composition of groundwater while highest concentration is in lower part of the basin are generally associated with the high salinity. In the major anions, bicarbonate (HCO3-) is higher due to rock-water interaction. Average value of chloride is about of 235 mg/L due to discharge zones along with anthropogenic activities. The geochemical data plotted on Piper Trilinear Diagram is showing dominant hydro-chemical facies: Ca2++Mg2+, Na++ K+, Cl-+ SO42- -HCO3- found in 83.3 % samples indicating the alkaline earth exceeding the alkalis and the strong acids exceeds the weak acids. The pH, Total Hardness (TH) and Magnesium (Mg2+) of the samples show more proportion of samples falling above desirable limit. Otherwise the quality of groundwater is good for drinking. The irrigation indices like SAR, KR and SSP were considered to evaluate groundwater suitability for irrigation. Comparing with SAR parameter all samples are excellent to good for irrigation. In SSP, 33.3 % samples are within permissible, while 66.6% samples are doubtful for irrigation purpose. In KR almost all samples (excluding 04 samples in lower side of basin) are suitable for irrigation. So, variations in climate, geology with anthropogenic activities are modifying the groundwater geochemistry of Vel River Basin.


2008 ◽  
Vol 43 (2-3) ◽  
pp. 85-98 ◽  
Author(s):  
Joshua R. Thienpont ◽  
Brian K. Ginn ◽  
Brian F. Cumming ◽  
John P. Smol

Abstract Paleolimnological approaches using sedimentary diatom assemblages were used to assess water quality changes over the last approximately 200 years in three lakes from King's County, Nova Scotia. In particular, the role of recent shoreline development in accelerating eutrophication in these systems was assessed. Sediment cores collected from each lake were analyzed for their diatom assemblages at approximately 5-year intervals, as determined by 210Pb dating. Analyses showed that each system has changed, but tracked different ecosystem changes. Tupper and George lakes recorded shifts, which are likely primarily related to climatic warming, with diatom assemblages changing from a preindustrial dominance by Aulacoseira spp. to present-day dominance by Cyclotella stelligera. In addition to the recent climatic-related changes, further diatom changes in the Tupper Lake core between approximately 1820 and 1970 were coincident with watershed disturbances (farming, forestry, and construction of hydroelectric power infrastructure). Black River Lake has recorded an increase in diatom-inferred total phosphorus since about 1950, likely due to impoundment of the Black River system for hydroelectric generation and subsequent changes in land runoff. Before-and-after (i.e., top-bottom) sediment analyses of six other lakes from King's County provided further evidence that the region is being influenced by climatic change (decreases in Aulacoseira spp., increases in planktonic diatom taxa), as well as showing other environmental stressors (e.g., acidification). However, we recorded no marked increase in diatom-inferred nutrient levels coincident with shoreline cottage development in any of the nine study lakes. Paleolimnological studies such as these allow lake managers to place the current limnological conditions into a long-term context, and thereby provide important background data for effective lake management.


2021 ◽  
Vol 13 (4) ◽  
pp. 2006
Author(s):  
Ning Ding ◽  
Jingfeng Zhu ◽  
Xiao Li ◽  
Xiangrong Wang

The rapid growth of metropolitan regions is closely associated with high nitrogen (N) flows, which is known as the most important reason for widespread water pollution. It is, therefore, crucial to explore the spatiotemporal patterns of N budgets under intensive human activity. In this study, we estimated the long-term (2000–2015) N budgets by integrating the net anthropogenic nitrogen input (NANI) and the export coefficient model (ECM) in the Yangtze River Delta Urban Agglomeration (YRDUA), a typical metropolitan area with strong human disturbances. The results revealed that the NANI decreased by 10% from 2000 to 2015, while N exports showed a 6% increase. Hotspots for N budgets were found in the northeastern areas, where cropland and construction land were dominant. The linear regression showed a close relationship between the NANI and N export, and about 18% of the NANI was exported into the river system. By revealing the critical sources and drivers of N budgets over time, our work aimed to provide effective information for regional policy on nitrogen management. Future strategies, such as improving the fertilizer efficiency, optimizing the land use pattern, and controlling the population density, are necessary in order to address the environmental challenge concerns of excessive N.


2020 ◽  
Vol 10 (2) ◽  
pp. 116-125
Author(s):  
Georgina Johnson ◽  
Wen San Hii ◽  
Samuel Lihan ◽  
Meng Guan Tay

The presence of microplastics in aquatic systems is mainly due to the anthropogenic activities such as domestic waste dumping. Undeniably, rivers either in urban or suburban areas are always a waste dumpling sites from the surrounding residences. Thus, the purpose of this study was to determine the relationship between microplastic abundance and different degree of urbanization across Kuching in Sarawak. Three sampling locations with different degrees of urbanisation had been studied across Kuching. A total of 137 pieces of microplastics were collected along the study and analysed using stereoscopic microscope for the shape identification and FTIR spectrophotometer for functional groups present in the microplastics. Filament was the most abundant microplastics shape found, whereas the IR results showed that ethylenevinylacetate (9%), polyamides or nylon (15%), polypropylene (42%), poly(methylmethacrylate) (16%) and polystyrene (18%) were found in the study. The most abundant microplastics in the water samples was polypropylene (42%), whereas ethylenevinylacetate (9%) was the least. The degree of urbanisation does not directly relate to the microplastic present in the river system in Kuching City, but the anthropogenic activity is the main factor that affecting the microplastic abundance in the river.   Keywords: anthropologenic activity, FTIR, microplastics, polymer identification, urban, sub-urban


Author(s):  
E. Parameswari ◽  
V. Davamani ◽  
R. Kalaiarasi ◽  
T. Ilakiya ◽  
S. Arulmani

Ecosystem undergoes drastic changes due to the anthropogenic activities. As a consequence of industrial development, increasing population growth and modernized agricultural practices water resources like limnetic zone and marine areas have undergone eutrophication. This resulted in the decline in population of phytoplankton and zooplankton. Hence, it is an urgent need to monitor the quality of the environment. Several organisms are used as biomonitors. Among them, Ostracodes (Seed Shrimps) which belong to Crustacean group are very sensitive to those changes in the environment and useful in predicting the paleo environmental conditions. Ostracodes are bivalve arthropods which are enclosed in a carapace made of low magnesium calcite. These species are occurring for about 450 million years dates back to ordovician which are known for their easier fossilization. The development of Ostracodes is influenced by the physic - chemical properties of waters such as Salinity, temperature, pH, Dissolved oxygen, bottom grain sizes and sedimentation rates.  In addition to diversity and abundance of population, morphological and geochemical changes can also be detected in the Ostracod carapace (shell) which serves as a tracer of the water quality. These details are basis for utilizing Ostracods as paleoenvironmental (paleoclimatic, paleosalinity, paleooceanographic) reconstruction, ecotoxicity monitoring, biostratigraphic indicator. Moreover, these microcrustaceans showed similar or higher sensitivity to herbicides, pesticides, oil spills or heavy metals pollution other than traditional groups like copepods, protozoan, rotifers, cladocerans which are used to test the human impacts on ecosystem. These meiofaunas are highly adaptable to waters containing organic and inorganic contaminants generated by catastrophic activities by human beings in the surroundings.


2021 ◽  
Vol 12 (5) ◽  
pp. 6557-6579

The introduction of inorganic and organic pollutants into water bodies has become a serious issue globally. The waste streams released from the textile, plastic, leather, paper, pharmaceutical, and food industries introduce different natural and synthetic dyes into the aquatic system. Nanomaterials play a significant role in the photocatalytic degradation of dyes present in wastewater. Inorganic metal oxide nanoparticles have many improved physical and chemical properties and attracted much attention in photocatalytic activities. Dyes have been released in our aquatic bodies due to many anthropogenic activities and caused life-threatening problems. Various conventional methods were reported to remove dyes from water and wastewater; the photocatalytic method is one of the efficient and cost-effective. The present review article includes detailed information on photocatalysis, the potential of metal oxide and their composite materials as photocatalysts in the degradation of toxic dyes, and some common synthetic and characterization methods used for metal oxide-based nanoparticles.


2020 ◽  
Author(s):  
Long Ho ◽  
Ruben Jerves-Cobo ◽  
Matti Barthel ◽  
Johan Six ◽  
Samuel Bode ◽  
...  

Abstract. Rivers act as a natural source of greenhouse gases (GHGs) that can be released from the metabolisms of aquatic organisms. Anthropogenic activities can largely alter the chemical composition and microbial communities of rivers, consequently affecting their GHG emissions. To investigate these impacts, we assessed the emissions of CO2, CH4, and N2O from Cuenca urban river system (Ecuador). High variation of the emissions was found among river tributaries that mainly depended on water quality and neighboring landscapes. By using Prati and Oregon Indexes, a clear pattern was observed between water quality and GHG emissions in which the more polluted the sites were, the higher were their emissions. When river water quality deteriorated from acceptable to very heavily polluted, their global warming potential (GWP) increased by ten times. Compared to the average estimated emissions from global streams, rivers with polluted water released almost double the estimated GWP while the proportion increased to ten times for very heavily polluted rivers. Conversely, the GWP of good-water-quality rivers was half of the estimated GWP. Furthermore, surrounding land-use types, i.e. urban, roads, and agriculture, significantly affected the river emissions. The GWP of the sites close to urban areas was four time higher than the GWP of the nature sites while this proportion for the sites close to roads or agricultural areas was triple and double, respectively. Lastly, by applying random forests, we identified dissolved oxygen, ammonium, and flow characteristics as the main important factors to the emissions. Conversely, low impact of organic matter and nitrate concentration suggested a higher role of nitrification than denitrification in producing N2O. These results highlighted the impacts of land-use types on the river emissions via water contamination by sewage discharges and surface runoff. Hence, to estimate of the emissions from global streams, both their quantity and water quality should be included.


2021 ◽  
Vol 118 (51) ◽  
pp. e2102629118
Author(s):  
Maodian Liu ◽  
Wenjie Xiao ◽  
Qianru Zhang ◽  
Shengliu Yuan ◽  
Peter A. Raymond ◽  
...  

Anthropogenic activities have led to widespread contamination with mercury (Hg), a potent neurotoxin that bioaccumulates through food webs. Recent models estimated that, presently, 200 to 600 t of Hg is sequestered annually in deep-sea sediments, approximately doubling since industrialization. However, most studies did not extend to the hadal zone (6,000- to 11,000-m depth), the deepest ocean realm. Here, we report on measurements of Hg and related parameters in sediment cores from four trench regions (1,560 to 10,840 m), showing that the world’s deepest ocean realm is accumulating Hg at remarkably high rates (depth-integrated minimum–maximum: 24 to 220 μg ⋅ m−2 ⋅ y−1) greater than the global deep-sea average by a factor of up to 400, with most Hg in these trenches being derived from the surface ocean. Furthermore, vertical profiles of Hg concentrations in trench cores show notable increasing trends from pre-1900 [average 51 ± 14 (1σ) ng ⋅ g−1] to post-1950 (81 ± 32 ng ⋅ g−1). This increase cannot be explained by changes in the delivery rate of organic carbon alone but also need increasing Hg delivery from anthropogenic sources. This evidence, along with recent findings on the high abundance of methylmercury in hadal biota [R. Sun et al., Nat. Commun. 11, 3389 (2020); J. D. Blum et al., Proc. Natl. Acad. Sci. U. S. A. 117, 29292–29298 (2020)], leads us to propose that hadal trenches are a large marine sink for Hg and may play an important role in the regulation of the global biogeochemical cycle of Hg.


Radiocarbon ◽  
2020 ◽  
Vol 62 (2) ◽  
pp. 289-311
Author(s):  
Alex da Silva de Freitas ◽  
Javier Helenes Escamilla ◽  
Cintia Ferreira Barreto ◽  
Alex Cardoso Bastos ◽  
Estefan Monteiro da Fonseca ◽  
...  

ABSTRACTMicropaleontological and geochemical data were applied to sediments from southeastern Brazil to study the hydrodynamics associated with the Holocene sea level rise. Sediment cores were taken around Vitória Bay, examined for dinoflagellate cysts and subjected to isotopic analysis. The cyst assemblage mainly dominated by autotrophic species most notably O. centrocarpum, L. machaerophorum and T. vancampoae. The influence of the marine transgression and subsequent regression observed during the Holocene along the coast of Brazil could have initially favored the establishment of an oligotrophic and higher energy environment. The inflow of continental water from tributaries combined with a higher inflow of saline water into the estuarine system could have favored the establishment and subsequent deposition of the dinocysts.


Sign in / Sign up

Export Citation Format

Share Document