scholarly journals Utilization of Ostracods (Crustacea) as Bioindicator for Environmental Pollutants

Author(s):  
E. Parameswari ◽  
V. Davamani ◽  
R. Kalaiarasi ◽  
T. Ilakiya ◽  
S. Arulmani

Ecosystem undergoes drastic changes due to the anthropogenic activities. As a consequence of industrial development, increasing population growth and modernized agricultural practices water resources like limnetic zone and marine areas have undergone eutrophication. This resulted in the decline in population of phytoplankton and zooplankton. Hence, it is an urgent need to monitor the quality of the environment. Several organisms are used as biomonitors. Among them, Ostracodes (Seed Shrimps) which belong to Crustacean group are very sensitive to those changes in the environment and useful in predicting the paleo environmental conditions. Ostracodes are bivalve arthropods which are enclosed in a carapace made of low magnesium calcite. These species are occurring for about 450 million years dates back to ordovician which are known for their easier fossilization. The development of Ostracodes is influenced by the physic - chemical properties of waters such as Salinity, temperature, pH, Dissolved oxygen, bottom grain sizes and sedimentation rates.  In addition to diversity and abundance of population, morphological and geochemical changes can also be detected in the Ostracod carapace (shell) which serves as a tracer of the water quality. These details are basis for utilizing Ostracods as paleoenvironmental (paleoclimatic, paleosalinity, paleooceanographic) reconstruction, ecotoxicity monitoring, biostratigraphic indicator. Moreover, these microcrustaceans showed similar or higher sensitivity to herbicides, pesticides, oil spills or heavy metals pollution other than traditional groups like copepods, protozoan, rotifers, cladocerans which are used to test the human impacts on ecosystem. These meiofaunas are highly adaptable to waters containing organic and inorganic contaminants generated by catastrophic activities by human beings in the surroundings.

2019 ◽  
Vol 9 (24) ◽  
pp. 191203 ◽  
Author(s):  
Meena Kapahi ◽  
Sarita Sachdeva

Background. Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. Objectives. The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. Methods. Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. Discussion. Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. Conclusions. Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. Competing interests. The authors declare no competing financial interests.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Denise P. Silva ◽  
Helena D. M. Villela ◽  
Henrique F. Santos ◽  
Gustavo A. S. Duarte ◽  
José Roberto Ribeiro ◽  
...  

Abstract Background Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. Results The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. Conclusions Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs.


2015 ◽  
Vol 19 (2) ◽  
pp. 39-50
Author(s):  
Inna Tiurikova ◽  
Mykhailo Peresichnyi

Abstract The results of studies in the field of beverage functionality using walnut are presented. The main components such as celery, Jerusalem artichokes, carrots, pumpkin and rhubarb, as a dietary supplement - extracts from walnut of milk-maturity stage are offered for creating blends. The basic physical and chemical properties of fruit and vegetable raw materials and semi-finished products created on the base of them have been studied, and their nutritional and biological value has been proved. Rational technologies of fruit and vegetable blends with nut additives have been identified. Their biological value has been confirmed. Drinks are recommended for use in the daily diet of human beings to satisfy thirst and enrich the body by biologically valuable components.


2021 ◽  
Vol 12 (5) ◽  
pp. 6557-6579

The introduction of inorganic and organic pollutants into water bodies has become a serious issue globally. The waste streams released from the textile, plastic, leather, paper, pharmaceutical, and food industries introduce different natural and synthetic dyes into the aquatic system. Nanomaterials play a significant role in the photocatalytic degradation of dyes present in wastewater. Inorganic metal oxide nanoparticles have many improved physical and chemical properties and attracted much attention in photocatalytic activities. Dyes have been released in our aquatic bodies due to many anthropogenic activities and caused life-threatening problems. Various conventional methods were reported to remove dyes from water and wastewater; the photocatalytic method is one of the efficient and cost-effective. The present review article includes detailed information on photocatalysis, the potential of metal oxide and their composite materials as photocatalysts in the degradation of toxic dyes, and some common synthetic and characterization methods used for metal oxide-based nanoparticles.


2020 ◽  
Vol 1 (2) ◽  
pp. 5
Author(s):  
Syeda Mehpara Farhat ◽  
Mahwish Ali

Aluminum (Al), is the third most abundant element in the earth's crust but it is “excluded from biology” as development of all biota has taken place without it and there are no known biological functions linked to it. Currently anthropogenic activities have resulted in great exposure of this non-essential metal to human beings. The intake of Al has implications on human health and increases risk of various diseases. Major sources of Al include occupational exposure, food and water. Water is of greatest concern because Al is commonly bioavailable in water. The alarming situation in Pakistan about Al concentration in drinking water calls for an immediate need to design policies and legislations to ensure below average risk of this metal's effects. Limiting human exposure to Al is the only way to reduce the risk of developing neurodegenerative disorders like Alzheimer's disease (AD). In view of the extensive literature review, we propose development of public health surveillance programs for AI at the policy level.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chao Li ◽  
Huijuan Li ◽  
Guicheng He ◽  
Zhiwu Lei ◽  
Wenyuan Wu

Photocatalytic technology is a widely used water treatment method, whose efficiency can be increased by developing a suitable photocatalyst fabrication procedure. In this study, five different synthesis methods were utilised for the preparation of novel ZnO/sepiolite photolytic composites, namely, sol-gel method, hydrothermal reduction, hydrolytic precipitation, powder sintering, and impregnation-reduction. The obtained photocatalysts were characterised by scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The differences between the applied photocatalyst preparation methods and the reasons for these differences were discussed, and the photocatalytic activities of the prepared composite materials were compared. The obtained results revealed that the physical structure, chemical properties, and photocatalytic performance of the composite produced by the sol-gel method were superior to those of the materials fabricated by the other four methods. Moreover, this material also exhibited high photocatalytic stability, while its photocatalytic degradation of methylene blue dye proceeded via a quasi-first-order reaction. The prepared composites have broad application prospects in photocatalysis and can be potentially used for treating environmental pollutants.


2019 ◽  
Vol 12 (1-2) ◽  
pp. 1-11
Author(s):  
Isaac Adelakun Gbiri ◽  
Nathaniel Olugbade Adeoye

Abstract Forest Reserves in Southwestern Nigeria have been threatened by urbanization and anthropogenic activities and the rate of deforestation is not known. This study examined the vegetation characteristics of Akure Forest Reserve using optical remote sensing data. It also assessed the changing pattern in the forest reserve between 1986 and 2017. Global Navigation Satellite System (GNSS) receiver was used to capture the location of the prominent settlements that surrounded the Forest Reserve in order to evaluate their effects on the forest. Landsat TM 1986, Landsat ETM+ 2002 and Landsat OLI_TIRS 2017 with 30m resolution were classified to assess the spatio-temporal changing pattern of the forest reserve. The results showed different composition of vegetation, which include undisturbed forest, secondary regrowth and farmlands. The study further revealed that in 1986, 2002 and 2017, undisturbed forest constituted 63.3%, 32.4% and 32.1% of the entire land area respectively, while secondary regrowth occupied 8.3% in 1986, 9.5% in 2002 and 15.6% in 2017. The farmlands had erratic growth between 1986 and 2017. It was 16.9% in 1986, 22.1% in 2002 and 17.5% in 2017. The bare ground exhibited inconsistency in the coverage. In 1986 the areal extent was 11.5%, when it increased to 36% in 2002 and decreased to 31.9% in 2017. In conclusion, the study revealed the extent of forest depletion at Akure Forest Reserve and it is therefore important that the residents, the government and the researchers show major concern about some of the critical factors to human beings that are responsible for forest depletion.


Author(s):  
Atef A. A. Sweed ◽  
Ahmed A. M. Awad

Low soil organic matter, low nutrient availability and the higher soil pH (more than 8) are the major problem of agricultural practices in region of Toshka. An incubation trial at October 2019 was conducted to investigate the effect of potassium humate (KH) and micronic sulfur (MS) on some chemical properties of different soils (sandy clay soils, loamy sand and sandy soils). The used amendments (KH and MS) were added to the studied soil at 4 levels of each amendment i.e. 0.0, 0.25, 0.50 and 1.0%. A two way randomized completely block design and provided with three replications. Studied parameters were included soil pH, EC, exchange Na and the content of available - P and K. Results showed that, the MS application at 1% level caused a significant decrease in soil pH values compared with the KH application and control treatment. These reductions were more pronounced in case of soil B (loamy sand). Also, KH application gave an increase on exchange Na and available-K. While MS application was cause an increased in soil EC and available-P in the three soils under study. Moreover, the increases in the percentage of available – K with added of KH were higher than added of MS for soils under study. While the percentages of available-P with added of KH were higher than with added of MS for studied soils. It may be recommended to add KH and MS at a rate of 1% to improve the soil chemical properties. But the effect of application from MS has greater than KH to increase dissolved sodium salts on the form of sodium sulfate, which facilitates disposal during soil drainage.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 343 ◽  
Author(s):  
Bożena Kozera-Sucharda ◽  
Barbara Gworek ◽  
Igor Kondzielski

Natural and synthetic aluminosilicate minerals, in particular zeolites, are considered to be very useful in remediation processes, such as purification of waters polluted with heavy metals. That is due to their unique and outstanding physico-chemical properties, rendering them highly efficient, low-cost, and environmentally friendly sorbents of various environmental pollutants. The aim of this study was to examine the sorption capacity of four selected zeolites: A natural zeolite and three synthetic zeolites (3A, 10A, and 13X), towards zinc and cadmium present in multicomponent aqueous solutions, in relation to identified sorption mechanisms. It was stated that synthetic zeolites 3A and 10A were the most efficient in simultaneous removal of zinc and cadmium from aqueous solutions. Additionally, zeolite 10A was demonstrated to be the mineral best coping with prolonged pollution of water with those elements. The mechanism of sorption identified for tested minerals was physisorption.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 896 ◽  
Author(s):  
Shafaqat Ali ◽  
Zohaib Abbas ◽  
Mahmoud F. Seleiman ◽  
Muhammad Rizwan ◽  
İlkay YAVAŞ ◽  
...  

Unexpected biomagnifications and bioaccumulation of heavy metals (HMs) in the surrounding environment has become a predicament for all living organisms together with plants. Excessive release of HMs from industrial discharge and other anthropogenic activities has threatened sustainable agricultural practices and limited the overall profitable yield of different plants species. Heavy metals at toxic levels interact with cellular molecules, leading towards the unnecessary generation of reactive oxygen species (ROS), restricting productivity and growth of the plants. The application of various osmoprotectants is a renowned approach to mitigate the harmful effects of HMs on plants. In this review, the effective role of glycine betaine (GB) in alleviation of HM stress is summarized. Glycine betaine is very important osmoregulator, and its level varies considerably among different plants. Application of GB on plants under HMs stress successfully improves growth, photosynthesis, antioxidant enzymes activities, nutrients uptake, and minimizes excessive heavy metal uptake and oxidative stress. Moreover, GB activates the adjustment of glutathione reductase (GR), ascorbic acid (AsA) and glutathione (GSH) contents in plants under HM stress. Excessive accumulation of GB through the utilization of a genetic engineering approach can successfully enhance tolerance against stress, which is considered an important feature that needs to be investigated in depth.


Sign in / Sign up

Export Citation Format

Share Document