Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

2006 ◽  
Vol 63 (2) ◽  
pp. 457-468 ◽  
Author(s):  
Michael L Jones ◽  
Brian J Shuter ◽  
Yingming Zhao ◽  
Jason D Stockwell

Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

2008 ◽  
Vol 12 (1) ◽  
pp. 239-255 ◽  
Author(s):  
E. McBean ◽  
H. Motiee

Abstract. In the threshold of the appearance of global warming from theory to reality, extensive research has focused on predicting the impact of potential climate change on water resources using results from Global Circulation Models (GCMs). This research carries this further by statistical analyses of long term meteorological and hydrological data. Seventy years of historical trends in precipitation, temperature, and streamflows in the Great Lakes of North America are developed using long term regression analyses and Mann-Kendall statistics. The results generated by the two statistical procedures are in agreement and demonstrate that many of these variables are experiencing statistically significant increases over a seven-decade period. The trend lines of streamflows in the three rivers of St. Clair, Niagara and St. Lawrence, and precipitation levels over four of the five Great Lakes, show statistically significant increases in flows and precipitation. Further, precipitation rates as predicted using fitted regression lines are compared with scenarios from GCMs and demonstrate similar forecast predictions for Lake Superior. Trend projections from historical data are higher than GCM predictions for Lakes Michigan/Huron. Significant variability in predictions, as developed from alternative GCMs, is noted. Given the general agreement as derived from very different procedures, predictions extrapolated from historical trends and from GCMs, there is evidence that hydrologic changes particularly for the precipitation in the Great Lakes Basin may be demonstrating influences arising from global warming and climate change.


2011 ◽  
Vol 59 (1) ◽  
pp. 24-35 ◽  
Author(s):  
Taner Cengiz

Periodic structures of Great Lakes levels using wavelet analysisThe recently advanced approach of wavelet transforms is applied to the analysis of lake levels. The aim of this study is to investigate the variability of lake levels in four lakes in the Great Lakes region where the method of continuous wavelet transform and global spectra are used. The analysis of lake-level variations in the time-scale domain incorporates the method of continuous wavelet transform and the global spectrum. Four lake levels, Lake Erie, Lake Michigan, Lake Ontario, and Lake Superior in the Great Lakes region were selected for the analysis. Monthly lake level records at selected locations were analyzed by wavelet transform for the period 1919 to 2004. The periodic structures of the Great Lakes levels revealed a spectrum between the 1-year and 43- year scale level. It is found that major lake levels periodicities are generally the annual cycle. Lake Michigan levels show different periodicities from Lake Erie and Lake Superior and Lake Ontario levels. Lake Michigan showed generally long-term (more than 10 years) periodicities. It was shown that the Michigan Lake shows much stronger influences of inter-annual atmospheric variability than the other three lakes. The other result was that some interesting correlations between global spectrums of the lake levels from the same climatic region were found.


2021 ◽  
Vol 13 (16) ◽  
pp. 9041
Author(s):  
Warda Panondi ◽  
Norihiro Izumi

The impacts of climate change are increasingly threatening the sustainability of ecosystems around the world. The Pulangi River Basin (PRB) in the Philippines is experiencing sedimentation beyond the tolerable amount (11.2 tons/ha/yr) due to land conversion and the effects of climate change. Changes in precipitation and temperature due to climate change are likely to further affect the annual runoff and sediment yield of PRB. In this study, the Soil and Water Assessment Tool (SWAT) was employed to simulate various scenarios of twelve downscaled climate projections from three Global Circulation Models (GCM) of CMIP5 under two Representative Concentration Pathways (RCP 4.5 and 6.0) for 2040–2069 and 2070–2099 timeframes, and the results were compared to a baseline period (1975–2005). This study revealed that the maximum mean annual precipitation is expected to increase by 39.10%, and the minimum and maximum temperatures are expected to increase by 3.04 °C and 3.83 °C, respectively. These observed changes correspond to an increase in runoff (44.58–76.80%) and sediment yield (1.33–26.28%) within the sub-basins. These findings suggest a general increase in the threat of severe flooding and excessive soil loss, leading to severe erosion and reservoir sedimentation throughout the PRB.


2009 ◽  
Vol 6 (2) ◽  
pp. 3089-3141 ◽  
Author(s):  
S. Barontini ◽  
G. Grossi ◽  
N. Kouwen ◽  
S. Maran ◽  
P. Scaroni ◽  
...  

Abstract. The potential impact of climate change scenarios on the runoff regime in the Italian Alpine area was investigated. A preliminary analysis of the output of three Global Circulation Models (PCM, HADCM, ECHAM) was needed to select IPCC-based scenarios for the 2000–2099 period. Two basins, 1840 and 236 km2 in size, respectively, and with different glaciated areas and storage capacity of reservoirs were selected as case studies. The PCM model, the one capable to better reproduce the observed rainfall regime in the investigated area, with the IPCC SRES A2 scenario was adopted for the meteorological forcing. On average for the two basins, an increase of annual precipitation of about 3% is expected for the 2050 scenario and should not significantly vary at the end of this century compared to present conditions. At the same time temperature should increase of 1.1°C in 2050 and 2.4°C for 2090. Because of the coarse resolution of the climate models' output, the statistics of the simulated rainy days and daily precipitation were adapted to the scale of the two selected basins using a modified version of the multiplicative cascade β-model, proposed in the literature to explain the statistics of intermittent fully developed turbulence. As regards to land cover, glaciated areas are decreased, in the future scenarios, according to the Kuhn's concept of equilibrium line adaptation to climate fluctuations. The tree-line altitude is increased, according to the observed trend since the end of the Little Ice Age: thus boundary conditions for evapotranspiration changed. The resulting meteorological variables and hydrological parameters were used to run the WATFLOOD hydrological model in order to assess the changes of runoff regimes in the two watersheds. A decrease of about 7% of annual runoff volume for the 2050 scenario and of 13% for the 2090 scenario was estimated, on average, at the outlet of the Oglio river basin, the largest one. In the smaller Lys basin, where the glaciated area is 8% of the total area, the annual runoff is foreseen to decrease by about 3% (for the 2050 scenario) and 14% at the end of this century. Also the runoff regime changes are significant, with an increase of spring melt and a decrease of summer and autumn runoff. No clear evidence is found for changes in the precipitation extremes and in the fraction of rainy days.


1996 ◽  
Vol 31 (2) ◽  
pp. 411-432 ◽  
Author(s):  
Michael E. Comba ◽  
Janice L. Metcalfe-Smith ◽  
Klaus L.E. Kaiser

Abstract Zebra mussels were collected from 24 sites in Lake Erie, Lake Ontario and the St. Lawrence River between 1990 and 1992. Composite samples of whole mussels (15 sites) or soft tissues (9 sites) were analyzed for residues of organochlo-rine pesticides and PCBs to evaluate zebra mussels as biomonitors for organic contaminants. Mussels from most sites contained measurable quantities of most of the analytes. Mean concentrations were (in ng/g, whole mussel dry weight basis) 154 ΣPCB, 8.4 ΣDDT, 3.5 Σchlordane, 3.4 Σaldrin, 1.4 ΣBHC, 1.0 Σendosulfan, 0.80 mirex and 0.40 Σchlorobenzene. Concentrations varied greatly between sites, i.e., from 22 to 497 ng/g for ΣPCB and from 0.08 to 11.6 ng/g for ΣBHC, an indication that mussels are sensitive to different levels of contamination. Levels of ΣPCB and Σendosulfan were highest in mussels from the St. Lawrence River, whereas mirex was highest in those from Lake Ontario. Overall, mussels from Lake Erie were the least contaminated. These observations agree well with the spatial contaminant trends shown by other biomoni-toring programs. PCB congener class profiles in zebra mussels are also typical for nearby industrial sources, e.g., mussels below an aluminum casting plant contained 55% di-, tri- and tetrachlorobiphenyls versus 31% in those upstream. We propose the use of zebra mussels as biomonitors of organic contamination in the Great Lakes.


2012 ◽  
Vol 47 (3-4) ◽  
pp. 421-435 ◽  
Author(s):  
Xuezhi Bai ◽  
Jia Wang

Atmospheric teleconnection circulation patterns associated with severe and mild ice cover over the Great Lakes are investigated using the composite analysis of lake ice data and National Center of Environmental Prediction (NCEP) reanalysis data for the period 1963–2011. The teleconnection pattern associated with the severe ice cover is the combination of a negative North Atlantic Oscillation (NAO) or Arctic Oscillation (AO) and negative phase of Pacific/North America (PNA) pattern, while the pattern associated with the mild ice cover is the combination of a positive PNA (or an El Niño) and a positive phase of the NAO/AO. These two extreme ice conditions are associated with the North American ridge–trough variations. The intensified ridge–trough system produces a strong northwest-to-southeast tilted ridge and trough and increases the anomalous northwesterly wind, advecting cold, dry Arctic air to the Great Lakes. The weakened ridge–trough system produces a flattened ridge and trough, and promotes a climatological westerly wind, advecting warm, dry air from western North America to the Great Lakes. Although ice cover for all the individual lakes responds roughly linearly and symmetrically to both phases of the NAO/AO, and roughly nonlinearly and asymmetrically to El Niño and La Niña events, the overall ice cover response to individual NAO/AO or Niño3.4 index is not statistically significant. The combined NAO/AO and Niño3.4 indices can be used to reliably project severe ice cover during the simultaneous –NAO/AO and La Niña events, and mild ice cover during the simultaneous +NAO/AO and El Niño events.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 63
Author(s):  
Mohammed A. Dakhil ◽  
Marwa Waseem A. Halmy ◽  
Walaa A. Hassan ◽  
Ali El-Keblawy ◽  
Kaiwen Pan ◽  
...  

Climate change is an important driver of biodiversity loss and extinction of endemic montane species. In China, three endemic Juniperus spp. (Juniperuspingii var. pingii, J.tibetica, and J.komarovii) are threatened and subjected to the risk of extinction. This study aimed to predict the potential distribution of these three Juniperus species under climate change and dispersal scenarios, to identify critical drivers explaining their potential distributions, to assess the extinction risk by estimating the loss percentage in their area of occupancy (AOO), and to identify priority areas for their conservation in China. We used ensemble modeling to evaluate the impact of climate change and project AOO. Our results revealed that the projected AOOs followed a similar trend in the three Juniperus species, which predicted an entire loss of their suitable habitats under both climate and dispersal scenarios. Temperature annual range and isothermality were the most critical key variables explaining the potential distribution of these three Juniperus species; they contribute by 16–56.1% and 20.4–38.3%, respectively. Accounting for the use of different thresholds provides a balanced approach for species distribution models’ applications in conservation assessment when the goal is to assess potential climatic suitability in new geographical areas. Therefore, south Sichuan and north Yunnan could be considered important priority conservation areas for in situ conservation and search for unknown populations of these three Juniperus species.


2021 ◽  
Vol 190 ◽  
pp. 103110
Author(s):  
Zhaozhi Wang ◽  
T.Q. Zhang ◽  
C.S. Tan ◽  
Lulin Xue ◽  
Melissa Bukovsky ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3500
Author(s):  
Michael Sayers ◽  
Karl Bosse ◽  
Gary Fahnenstiel ◽  
Robert Shuchman

Large freshwater lakes provide immense value to the surrounding populations, yet there is limited understanding of how these lakes will respond to climate change and other factors. This study uses satellite remote sensing to estimate annual, lake-wide primary production in 11 of the world’s largest lakes from 2003–2018. These lakes include the five Laurentian Great Lakes, the three African Great Lakes, Lake Baikal, and Great Bear and Great Slave Lakes. Mean annual production in these lakes ranged from under 200 mgC/m2/day to over 1100 mgC/m2/day, and the lakes were placed into one of three distinct groups (oligotrophic, mesotrophic, or eutrophic) based on their level of production. The analysis revealed only three lakes with significant production trends over the study period, with increases in Great Bear Lake (24% increase over the study period) and Great Slave Lake (27%) and a decline in Lake Tanganyika (−16%). These changes appear to be related to climate change, including increasing temperatures and solar radiation and decreasing wind speeds. This study is the first to use consistent methodology to study primary production in the world’s largest lakes, allowing for these novel between-lake comparisons and assessment of inter-annual trends.


Sign in / Sign up

Export Citation Format

Share Document