Seasonal temperature variations influence tapetum mitosis patterns associated with reproductive fitness

Genome ◽  
2014 ◽  
Vol 57 (9) ◽  
pp. 517-521 ◽  
Author(s):  
Umesh C. Lavania ◽  
Surochita Basu ◽  
Jyotsana Singh Kushwaha ◽  
Seshu Lavania

Environmental stress in plants impacts many biological processes, including male gametogenesis, and affects several cytological mechanisms that are strongly interrelated. To understand the likely impact of rising temperature on reproductive fitness in the climate change regime, a study of tapetal mitosis and its accompanying meiosis over seasons was made to elucidate the influence of temperature change on the cytological events occurring during microsporogenesis. For this we used two species of an environmentally sensitive plant system, i.e., genus Cymbopogon Sprengel (Poaceae), namely Cymbopogon nardus (L.) Rendle var. confertiflorus (Steud.) Bor (2n = 20) and Cymbopogon jwaruncusha (Jones) Schult. (2n = 20). Both species flower profusely during extreme summer (48 °C) and mild winter (15 °C) but support low and high seed fertility, respectively, in the two seasons. We have shown that tapetal mitotic patterns over seasons entail differential behavior for tapetal mitosis. During the process of tapetum development there are episodes of endomitosis that form either (i) an endopolyploid genomically imbalanced uninucleate and multinucleate tapetum, and (or) (ii) an acytokinetic multinucleate genomically balanced tapetum, with the progression of meiosis in the accompanying sporogenous tissue. The relative frequency of occurrence of the two types of tapetum mitosis patterns is significantly different in the two seasons, and it is found to be correlated with the temperature conditions. Whereas, the former (genomically imbalanced tapetum) are prevalent during the hot summer, the latter (genomically balanced tapetum) are frequent under optimal conditions. Such a differential behaviour in tapetal mitosis vis-à-vis temperature change is also correspondingly accompanied by substantial disturbances or regularity in meiotic anaphase disjunction. Both species show similar patterns. The study underpins that tapetal mitotic behaviour per se could be a reasonable indicator to elucidate the effect of climate change on reproductive fitness.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


Author(s):  
Kanawut Chattrairat ◽  
Waranyu Wongseree ◽  
Adisorn Leelasantitham

The climate change which is essential for daily life and especially agriculture has been forecasted by global climate models (GCMs) in the past few years. Statistical downscaling method (SD) has been used to improve the GCMs and enables the projection of local climate. Many pieces of research have studied climate change in case of individually seasonal temperature and precipitation for simulation; however, regional difference has not been included in the calculation. In this research, four fundamental SDs, linear regression (LR), Gaussian process (GP), support vector machine (SVM) and deep learning (DL), are studied for daily maximum temperature (TMAX), daily minimum temperature (TMIN), and precipitation (PRCP) based on the statistical relationship between the larger-scale climate predictors and predictands in Thailand. Additionally, the data sets of climate variables from over 45 weather stations overall in Thailand are used to calculate in this calculation. The statistical analysis of two performance criteria (correlation and root mean square error (RMSE)) shows that the DL provides the best performance for simulation. The TMAX and TMIN were calculated and gave a similar trend for all models. PRCP results found that in the North and South are adequate and poor performance due to high and low precipitation, respectively. We illustrate that DL is one of the suitable models for the climate change problem.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


Author(s):  
Lopin Kuo ◽  
Hui-Cheng Yu ◽  
Bao-Guang Chang

Purpose – This paper aims to examines whether Chinese firms’ signals of green governance, including environmental management, green innovation, and greenhouse gas (GHG) and pollution emission, vary significantly with their ownership structure and aim of being environmentally sensitive. Design/methodology/approach – From corporate social responsibility (CSR)-China website and CNINFO, a total of 781 CSR reports released during 2008-2010 were collected. The collected data were coded and analyzed using content analysis. Findings – In overall disclosure of environmental protection information (TotalEP), no significant difference existed between state-owned enterprises (SOEs) and privately owned enterprises (POEs). Chinese environmentally sensitive industries (ESIs) have a tendency to disclose significantly more information about their actions of environmental protection than their counterparts. Moreover, SOEs and ESIs scored higher than their counterparts on energy saving and carbon reduction and development of circular economy. A steady increase was also observed in the disclosure ratio for CO2 emission. During 2008-2010, SOEs and ESIs were relatively more committed to the disclosure of SO2 emission as compared to other emission items. Practical implications – Managers should disclose signals of green governance actively to avoid adverse selection caused by information asymmetry which further lower their financing cost. Originality/value – There is still a lack of evidence as to whether Chinese firms are implementing actions to slow down climate change. This paper endeavours to provide an insight into Chinese firms’ compliance with the green governance requirements of the Eleventh Five-Year Plan. The study hopes to fill the current gap in understanding the environmental behaviours of Chinese firms under pressure to alleviate climate change.


2006 ◽  
Vol 2 (2) ◽  
pp. 145-165 ◽  
Author(s):  
V. Masson-Delmotte ◽  
G. Dreyfus ◽  
P. Braconnot ◽  
S. Johnsen ◽  
J. Jouzel ◽  
...  

Abstract. Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP) and Antarctic (Dome C) ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core-based temperature reconstructions. In Antarctica, the CO2-induced warming lies clearly beyond the natural rhythm of temperature fluctuations. In Greenland, the CO2-induced warming is as fast or faster than the most rapid temperature shifts of the last ice age. The magnitude of polar temperature change in response to a quadrupling of atmospheric CO2 is comparable to the magnitude of the polar temperature change from the Last Glacial Maximum to present-day. When forced by prescribed changes in ice sheet reconstructions and CO2 changes, climate models systematically underestimate the glacial-interglacial polar temperature change.


2020 ◽  
Vol 287 (1929) ◽  
pp. 20200358
Author(s):  
Junfeng Tang ◽  
Ronald R. Swaisgood ◽  
Megan A. Owen ◽  
Xuzhe Zhao ◽  
Wei Wei ◽  
...  

Climate change is one of the most pervasive threats to biodiversity globally, yet the influence of climate relative to other drivers of species depletion and range contraction remain difficult to disentangle. Here, we examine climatic and non-climatic correlates of giant panda ( Ailuropoda melanoleuca ) distribution using a large-scale 30 year dataset to evaluate whether a changing climate has already influenced panda distribution. We document several climatic patterns, including increasing temperatures, and alterations to seasonal temperature and precipitation. We found that while climatic factors were the most influential predictors of panda distribution, their importance diminished over time, while landscape variables have become relatively more influential. We conclude that the panda's distribution has been influenced by changing climate, but conservation intervention to manage habitat is working to increasingly offset these negative consequences.


Author(s):  
Costas A. Varotsos ◽  
Yuri A. Mazei

There is increasing evidence that extreme weather events such as frequent and intense cold spells and heat waves cause unprecedented deaths and diseases in both developed and developing countries. Thus, they require extensive and immediate research to limit the risks involved. Average temperatures in Europe in June–July 2019 were the hottest ever measured and attributed to climate change. The problem, however, of a thorough study of natural climate change is the lack of experimental data from the long past, where anthropogenic activity was then very limited. Today, this problem can be successfully resolved using, inter alia, biological indicators that have provided reliable environmental information for thousands of years in the past. The present study used high-resolution quantitative reconstruction data derived from biological records of Lake Silvaplana sediments covering the period 1181–1945. The purpose of this study was to determine whether a slight temperature change in the past could trigger current or future intense temperature change or changes. Modern analytical tools were used for this purpose, which eventually showed that temperature fluctuations were persistent. That is, they exhibit long memory with scaling behavior, which means that an increase (decrease) in temperature in the past was always followed by another increase (decrease) in the future with multiple amplitudes. Therefore, the increase in the frequency, intensity, and duration of extreme temperature events due to climate change will be more pronounced than expected. This will affect human well-being and mortality more than that estimated in today’s modeling scenarios. The scaling property detected here can be used for more accurate monthly to decadal forecasting of extreme temperature events. Thus, it is possible to develop improved early warning systems that will reduce the public health risk at local, national, and international levels.


Author(s):  
Ana Florindo ◽  
Kátia Lemos ◽  
Sónia Monteiro ◽  
Verónica Ribeiro

This article aims to investigate the extent of carbon emissions disclosures in Portuguese companies operating in environmentally sensitive industries, from 2008 to 2012. Additionally, the chapter aims to explore the factors that explain the extent of such disclosures. The research sample is based upon Portuguese companies that had been continuously integrating in the PNALE I and II, over the twelve-year period. A content analysis of their annual/sustainability reports was conducted to explore the carbon emissions-related disclosures. The study also uses a disclosure index to investigate the extent of disclosure and a panel data regression model was performed to determine the factors that influence carbon emissions reporting. The results show a relatively high level of disclosure and the influence of size, activity sector, concentration of capital and economic period on the level of disclosure presented.


Sign in / Sign up

Export Citation Format

Share Document