Hyperthermia and voluntary exhaustion: integrating models and future challenges

2007 ◽  
Vol 32 (4) ◽  
pp. 808-817 ◽  
Author(s):  
Stephen S. Cheung

Over the past decade, research interest has risen on the direct effects of temperature on exercise capacity and tolerance, particular in the heat. Two major paradigms have been proposed for how hyperthermia may contribute to voluntary fatigue during exercise in the heat. One suggests that voluntary exhaustion occurs upon the approach or attainment of a critical internal temperature through impairment in a variety of physiological systems. An alternate perspective proposes that thermal inputs modulate the regulation of self-paced workload to minimize heat storage. This review seeks to summarize recent research leading to the development of these two models for hyperthermia and fatigue and explore possible bridges between them. Key areas for future research and development into voluntary exhaustion in the heat include (i) the development of valid and non-invasive means to measure brain temperature, (ii) understanding variability in perception and physiological responses to heat stress across individuals, (iii) extrapolating laboratory studies to field settings, (iv) understanding the failure in behavioural and physiological thermoregulation that leads to exertional heat illness, and (v) the integration of physiological and psychological parameters limiting voluntary exercise in the heat.

2015 ◽  
Vol 53 (4) ◽  
pp. 304-314 ◽  
Author(s):  
Ali Erfani Karimzadeh Toosi

AbstractHepatic fibrogenesis is the final result of injury to the liver. Fibrosis could lead to hepatic dysfunction, important in the pathogenesis of other chronic problems. Therefore, understanding the mechanism, accurate diagnosis and staging of it in early stages accelerates the treatment and reduces the prevalence of chirrosis. Treatment strategies of liver problems and detction methods depend on the amount and progression of liver fibrosis and the rate of cirrhosis development. Traditionally the invasive method, liver biopsy, is reference standard to follow progression and stage of fibrosis. However, during the past decade, progressive development of novel non-invasive methodologies has challenged the invasive method. Non-invasive methods have been initially introduced for chronic hepatitis C with increasing use in other chronic liver diseases. The need for liver biopsy has nowadays decreased significantly as a result of these methodologies. Most of the new non-invasive methods depend on either ‘biological’ or ‘physical’ approaches.In this review, starting from the mechanism of fibrogenesis, the current knowledge about diagnosis, treatment strategies and different methods for its evaluation is discussed. This is followed by a conclusion on what is expected to be known in this field during the future research.


2020 ◽  
Vol 3 ◽  
pp. 205920432093722
Author(s):  
Beatriz Ilari

Based on a comprehensive analysis of 39 studies published in academic journals in the past decade (2010–2020), this article discusses the strengths of current research and the challenges that lie ahead for researchers interested in conducting longitudinal research on music education and child development. Among the strengths of the reviewed studies are multi-year projects, diverse study samples and programs, and a wide range of areas of interest—cognitive and neural to socioemotional and musical development. Challenges for future research are described in relation to three main perspectives. The methodological, the first perspective, tackles future challenges in terms of research approaches, population sampling, randomization, replication, and the lack of cross-cultural longitudinal research. The second perspective, the conceptual-philosophical, focuses on how children, music, and music education have been defined—in deliberate or tacit ways—in longitudinal works, and their implications for both research and practice. The third perspective, the political, focuses on the extent to which research on the effects of music education may be interpreted by some as promoting a neoliberal educational agenda. I conclude the article with suggestions for future research.


2021 ◽  
Author(s):  
Hongyu Zhou ◽  
Xing Wang ◽  
Wesley Au ◽  
Hanwen Kang ◽  
Chao Chen

Abstract Intelligent robots for fruit harvesting have been actively developed over the past decades to bridge the increasing gap between feeding a rapidly growing population and limited labour resources. Despite significant advancements in this field, widespread use of harvesting robots in orchards is yet to be seen. To identify the challenges and formulate future research and development directions, this work reviews the state-of-the-art of intelligent fruit harvesting robots by comparing their system architectures, visual perception approaches, fruit detachment methods and system performances. The potential reasons behind the inadequate performance of existing harvesting robots are analysed and a novel map of challenges and potential research directions is created, considering both environmental factors and user requirements.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (4) ◽  
pp. 31-36 ◽  
Author(s):  
YULIN DENG ◽  
PHIL JONES ◽  
LESLIE MCLAIN ◽  
ART J. RAGAUSKAS

High-filler-content paper is a growing research and development opportunity in papermaking. These new products must address traditional paper product properties while providing papermakers with distinct product platform benefits. Over the past decade, a research team involving researchers from the Institute of Paper Science and Technology at Georgia Institute of Technology and from Imerys have significantly advanced the application of starch-encapsulated papermaking fillers. This review summarizes these accomplishments from initial laboratory studies to mill trials. Laboratory results have illustrated that starch-encapsulated fillers can facilitate a near-doubling of filler content over conventional levels at equal tensile and z-direction tensile (ZDT) values. Equally important is that the use of starch-encapsulated kaolin (SEK) filler has been shown to facilitate a doubling of filler addition rate without any detrimental impact on ring crush compared with control studies with filler. Pilot-plant and mill trials have shown that SEK can function as a fiber extender, reduce steam demand for drying by 10%, and increase papermaking speeds and production rates.


2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


2019 ◽  
Vol 20 (3) ◽  
pp. 251-264 ◽  
Author(s):  
Yinlu Feng ◽  
Zifei Yin ◽  
Daniel Zhang ◽  
Arun Srivastava ◽  
Chen Ling

The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier.


Author(s):  
John D. Horner ◽  
Bartosz J. Płachno ◽  
Ulrike Bauer ◽  
Bruno Di Giusto

The ability to attract prey has long been considered a universal trait of carnivorous plants. We review studies from the past 25 years that have investigated the mechanisms by which carnivorous plants attract prey to their traps. Potential attractants include nectar, visual, olfactory, and acoustic cues. Each of these has been well documented to be effective in various species, but prey attraction is not ubiquitous among carnivorous plants. Directions for future research, especially in native habitats in the field, include: the qualitative and quantitative analysis of visual cues, volatiles, and nectar; temporal changes in attractants; synergistic action of combinations of attractants; the cost of attractants; and responses to putative attractants in electroantennograms and insect behavioral tests.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amin Mohamadi ◽  
Kaveh Momenzadeh ◽  
Aidin Masoudi ◽  
Kempland C. Walley ◽  
Kenny Ierardi ◽  
...  

Abstract Background Knowledge regarding the biomechanics of the meniscus has grown exponentially throughout the last four decades. Numerous studies have helped develop this knowledge, but these studies have varied widely in their approach to analyzing the meniscus. As one of the subcategories of mechanical phenomena Medical Subject Headings (MeSH) terms, mechanical stress was introduced in 1973. This study aims to provide an up-to-date chronological overview and highlights the evolutionary comprehension and understanding of meniscus biomechanics over the past forty years. Methods A literature review was conducted in April 2021 through PubMed. As a result, fifty-seven papers were chosen for this narrative review and divided into categories; Cadaveric, Finite element (FE) modeling, and Kinematic studies. Results Investigations in the 1970s and 1980s focused primarily on cadaveric biomechanics. These studies have generated the fundamental knowledge basis for the emergence of FE model studies in the 1990s. As FE model studies started to show comparable results to the gold standard cadaveric models in the 2000s, the need for understanding changes in tissue stress during various movements triggered the start of cadaveric and FE model studies on kinematics. Conclusion This study focuses on a chronological examination of studies on meniscus biomechanics in order to introduce concepts, theories, methods, and developments achieved over the past 40 years and also to identify the likely direction for future research. The biomechanics of intact meniscus and various types of meniscal tears has been broadly studied. Nevertheless, the biomechanics of meniscal tears, meniscectomy, or repairs in the knee with other concurrent problems such as torn cruciate ligaments or genu-valgum or genu-varum have not been extensively studied.


Author(s):  
Xiaochen Zhang ◽  
Lanxin Hui ◽  
Linchao Wei ◽  
Fuchuan Song ◽  
Fei Hu

Electric power wheelchairs (EPWs) enhance the mobility capability of the elderly and the disabled, while the human-machine interaction (HMI) determines how well the human intention will be precisely delivered and how human-machine system cooperation will be efficiently conducted. A bibliometric quantitative analysis of 1154 publications related to this research field, published between 1998 and 2020, was conducted. We identified the development status, contributors, hot topics, and potential future research directions of this field. We believe that the combination of intelligence and humanization of an EPW HMI system based on human-machine collaboration is an emerging trend in EPW HMI methodology research. Particular attention should be paid to evaluating the applicability and benefits of the EPW HMI methodology for the users, as well as how much it contributes to society. This study offers researchers a comprehensive understanding of EPW HMI studies in the past 22 years and latest trends from the evolutionary footprints and forward-thinking insights regarding future research.


Critical Care ◽  
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Arif Hussain ◽  
Gabriele Via ◽  
Lawrence Melniker ◽  
Alberto Goffi ◽  
Guido Tavazzi ◽  
...  

AbstractCOVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.


Sign in / Sign up

Export Citation Format

Share Document