Reply: Limit States Design—An Innovation in Design Standards for Steel Structures

1975 ◽  
Vol 2 (1) ◽  
pp. 121-121
Author(s):  
D. J. Laurie Kennedy
1996 ◽  
Vol 23 (6) ◽  
pp. 1295-1304 ◽  
Author(s):  
Murray C. Temple ◽  
Ghada M. Elmahdy

Many steel design standards, including CAN/CSA-S16.1-M89 "Limit states design of steel structures," specify maximum slenderness ratios for the individual main members between the interconnectors of built-up compression members. Previous research on which these requirements are based is reviewed. It is shown that the imperfection sensitivity due to coupled instabilities is measured from bifurcation critical loads. However, steel standards are based on a compressive resistance determined for a member with an initial out-of-straightness and a suitable residual stress pattern. It is shown that the use of an equivalent slenderness ratio equation is sufficient to predict the compressive resistance of these built-up members. Further restrictions on the slenderness ratio of built-up members between interconnectors are not warranted. Thus, the elimination of these requirements from S16.1-94 is justified. Key words: built-up members, codes, compressive resistance, coupled instabilities, equivalent slenderness ratio, interconnectors.


1974 ◽  
Vol 1 (1) ◽  
pp. 1-13 ◽  
Author(s):  
D. J. Laurie Kennedy

The greater rationality of limit states design as compared to working stress design is developed to show that limit states design leads to a more consistent probability of failure and that neither overly safe and therefore uneconomic structures nor structures with insufficient safety should result from this design methodology.This rationality is extended in the limit states design method in that the performance of the structure and its components is checked against the various limit states at the appropriate load levels. Thus the limit states of serviceability are checked at specified load levels and of strength and stability at the factored load levels.Functions are presented for the two sides of the inequality:[Formula: see text]A comparative design of a 20-storey structure selected to provide a wide range of variables shows that limit states design as proposed results in a structure comparable to that designed by working stress method with a moderate saving in the weight of steel. Some simple design examples are worked out to show the basic similarities between working stress design and limit states design and that the two methods are of about equal complexity or simplicity. It is believed, because the designer will have to check the ultimate resistance against the effect of the factored loads, that he will develop a greater awareness of the behavior of the material and members with which he is working.


1989 ◽  
Vol 16 (2) ◽  
pp. 124-139 ◽  
Author(s):  
Robert G. Driver ◽  
D. J. Laurie Kennedy

Design standards provide little information for the design of I-shaped steel beams not loaded through the shear centre and therefore subjected to combined flexure and torsion. In particular, methods for determining the ultimate capacity, as is required in limit states design standards, are not presented. The literature on elastic analysis is extensive, but only limited experimental and analytical work has been conducted in the inelastic region. No comprehensive design procedures, applicable to limit states design standards, have been developed.From four tests conducted on cantilever beams, with varying moment–torque ratios, it is established that the torsional behaviour has two distinct phases, with the second dominated by second-order geometric effects. This second phase is nonutilizable because the added torsional restraint developed is path dependent and, if deflections had been restricted, would not have been significant. Based on the first-phase behaviour, a normal and shearing stress distribution on the cross section is proposed. From this, a moment–torque ultimate strength interaction diagram is developed, applicable to a number of different end and loading conditions. This ultimate limit state interaction diagram and serviceability limit states, based on first yield and on distortion limitations, provide a comprehensive design approach for these members. Key words: beams, bending moment, flexure, inelastic, interaction diagram, I-shaped, limit states, serviceability, steel, torsion, torque, ultimate.


Author(s):  
Torgeir Moan

Based on relevant accident experiences with oil and gas platforms, a brief overview of structural integrity management of offshore structures is given; including an account of adequate design criteria, inspection, repair and maintenance as well as quality assurance and control of the engineering processes. The focus is on developing research based design standards for Accidental Collapse Limit States to ensure robustness or damage tolerance in view damage caused by accidental loads due to operational errors and to some extent abnormal structural damage due to fabrication errors. Moreover, it is suggested to provide robustness in cases where the structural performance is sensitive to uncertain parameters. The use of risk assessment to aid decisions in lieu of uncertainties affecting the performance of novel and existing offshore structures, is briefly addressed.


2013 ◽  
Vol 12 (2) ◽  
pp. 213-220
Author(s):  
Marian Giżejowski ◽  
Zbigniew Stachura

Issues related to safety requirements for steel elements subjected to different stress resultants in reference to limit states design philosophy according to Structural Eurocodes PN-EN and national codes PN-B are dealt with in the paper. The calibration of partial cross-section resistance factors is discussed on the basis of elements of steel floor structures where the permanent load component and the live load component of variable actions are the only components of load combinations. Final conclusions for their practical application in the codification process are formulated and values of partial factors for cross section resistance are proposed.


Author(s):  
Vitali Nadolski ◽  
Árpád Rózsás ◽  
Miroslav Sýkora

Partial factors are commonly based on expert judgements and on calibration to previous design formats. This inevitably results in unbalanced structural reliability for different types of construction materials, loads and limit states. Probabilistic calibration makes it possible to account for plentiful requirements on structural performance, environmental conditions, production and execution quality etc. In the light of ongoing revisions of Eurocodes and the development of National Annexes, the study overviews the methodology of probabilistic calibration, provides input data for models of basic variables and illustrates the application by a case study. It appears that the partial factors recommended in the current standards provide for a lower reliability level than that indicated in EN 1990. Different values should be considered for the partial factors for imposed, wind and snow loads, appreciating the distinct nature of uncertainties in their load effects.


2020 ◽  
Vol 23 (16) ◽  
pp. 3525-3540
Author(s):  
Asad Naeem ◽  
Jinkoo Kim

In this study, the seismic performance of a rotational friction damper with restoring force is presented. The torsional spring friction damper consists of rotational friction pads with the heavy duty torsional springs attached on both sides of the friction damper. An analytical model and a design procedure for the damper are developed using capacity spectrum method. A parametric study is carried out to investigate the influence of the torsional spring in the response of the structure when subjected to ground motions. The seismic performances of steel structures retrofitted with the torsional spring friction damper and conventional rotational friction dampers are evaluated using fragility analysis, which shows that the structure retrofitted with the torsional spring friction damper has the smallest probability of reaching the specific limit states.


2016 ◽  
Vol 821 ◽  
pp. 774-781
Author(s):  
Ivan Balaz ◽  
Yvona Kolekova

Overview of values and definitions of material partial factors γM0 and γM1 used in all 20 parts of Eurocodes EN 1993 Design of steel structures [1] and in all 5 parts of EN 1999 Design of aluminium structures [2]. Applications of the γM0 and γM1 partial factors values and definitions in all clauses of EN 1993. Comparison of safety levels of former Czechoslovak standards (ČSN) with current Eurocodes. Proposals for correction of definitions and applications of γM0 and γM1 partial factors in all clauses of EN 1993. The overview and corrections enable to do better choice from five official options aiming to change current value γM1 = 1,0 valid in EN 1993-1-1 for buildings, which were presented at CEN/TC250 SC3 meetings in October 24th 2014 and in March 19th 2015 in Berlin.


1981 ◽  
Vol 8 (2) ◽  
pp. 130-136 ◽  
Author(s):  
S. U. Pillai

Comparisons are made between results of 81 recent tests on beam columns subjected to unsymmetrical and biaxially eccentric loads and the capacities predicted by design equations recommended by CSA standard S16.1-M78 — Steel Structures for Buildings — Limit States Design. It is concluded that the general provisions of the standard lead to satisfactory designs whereas the detailed procedure given in the Appendix of the standard may lead to a higher proportion of unsafe results.


Sign in / Sign up

Export Citation Format

Share Document