The rational method revisited

1984 ◽  
Vol 11 (4) ◽  
pp. 854-862 ◽  
Author(s):  
Alan A. Smith ◽  
Ken-Beck Lee

Despite the increasing availability of more-sophisticated methods for simulating rainfall–runoff events, the 'rational method' continues to be used as a design tool in many municipal engineering offices. This paper examines the basic assumptions of the method and shows how hydrographs from impervious areas can be accurately simulated by a simple convolution process using the rectangular response function implied in the rational method. The use of the dynamically varying response function appears to give improved results. Moreover, in the example illustrated, routing of the runoff through a hypothetical reservoir appears to be unnecessary.For pervious areas, a method is suggested whereby the runoff coefficient is varied as a function of the time-dependent storage potential in the soil. For events with modest rainfall abstractions, the method appears to give good agreement with observed runoff hydrographs, but inclusion of a routing process through a cascade of reservoirs seems to be necessary in this case. Key words: computer, design, hydrology, rainfall, rational, runoff.

1997 ◽  
Vol 36 (8-9) ◽  
pp. 51-56
Author(s):  
F. Calomino ◽  
P. Veltri ◽  
P. Piro ◽  
J. Niemczynowicz

In Urban Hydrology, a basic question is whether or not the common methods involving the use of design storms bring to the the some results obtained by those methods that make use of real storms. In general, one can say that different design storms give good results when used with the appropriate model, or, conversely, that good results can be achieved through careful model calibration. On the basis of 51 rainfall-runoff recordings obtained from the experimental catchment of Luzzi (Cosenza, Italy), the frequency distribution of the observed peak discharges was initially computed. Then the runoff events were simulated using Wallrus, a well known simulation model, taking as input the observed precipitations. The frequency distribution of the simulated peak discharges was compared to that of the observed ones, with the aim of calibrating the model on a statistical basis. After that, the rainfall events were analysed, obtaining the frequency distributions of the observed intensities over several durations and developing IDF curves of given frequencies and, then, the Chicago design storms. The plotting positions of the peak discharges simulated by this way show a good agreement with the distribution of both the observed peak discharges and the peak discharges simulated through the real storms.


RBRH ◽  
2019 ◽  
Vol 24 ◽  
Author(s):  
Luiz Claudio Galvão do Valle Junior ◽  
Dulce Buchala Bicca Rodrigues ◽  
Paulo Tarso Sanches de Oliveira

ABSTRACT The Curve Number (CN) method is extensively used for predict surface runoff from storm events. However, remain some uncertainties in the method, such as in the use of an initial abstraction (λ) standard value of 0.2 and on the choice of the most suitable CN values. Here, we compute λ and CN values using rainfall and runoff data to a rural basin located in Midwestern Brazil. We used 30 observed rainfall-runoff events with rainfall depth greater than 25 mm to derive associated CN values using five statistical methods. We noted λ values ranging from 0.005 to 0.455, with a median of 0.045, suggesting the use of λ = 0.05 instead of 0.2. We found a S0.2 to S0.05 conversion factor of 2.865. We also found negative values of Nash-Sutcliffe Efficiency (to the estimated and observed runoff). Therefore, our findings indicated that the CN method was not suitable to estimate runoff in the studied basin. This poor performance suggests that the runoff mechanisms in the studied area are dominated by subsurface stormflow.


2016 ◽  
Vol 14 (3) ◽  
pp. 443-459 ◽  
Author(s):  
Keewook Kim ◽  
Gene Whelan ◽  
Marirosa Molina ◽  
S. Thomas Purucker ◽  
Yakov Pachepsky ◽  
...  

A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying release of Escherichia coli, enterococci, and fecal coliforms from manures applied at typical agronomic rates evaluated the efficacy of the Bradford–Schijven model modified by adding terms for release efficiency and transportation loss. Two complementary, parallel approaches were used to calibrate the model and estimate microbial release parameters. The first was a four-step sequential procedure using the inverse model PEST, which provides appropriate initial parameter values. The second utilized a PEST/bootstrap procedure to estimate average parameters across plots, manure age, and microbe, and to provide parameter distributions. The experiment determined that manure age, microbe, and season had no clear relationship to the release curve. Cattle solid pats released microbes at a different, slower rate than did poultry dry litter or swine slurry, which had very similar release patterns. These findings were consistent with other published results for both bench- and field-scale, suggesting the modified Bradford–Schijven model can be applied to microbial release from manure.


2015 ◽  
Vol 63 (3) ◽  
pp. 235-245 ◽  
Author(s):  
Laurent Pfister ◽  
Carlos E. Wetzel ◽  
Núria Martínez-Carreras ◽  
Jean François Iffly ◽  
Julian Klaus ◽  
...  

Abstract Hydrological processes research remains a field that is severely measurement limited. While conventional tracers (geochemicals, isotopes) have brought extremely valuable insights into water source and flowpaths, they nonetheless have limitations that clearly constrain their range of application. Integrating hydrology and ecology in catchment science has been repeatedly advocated as offering potential for interdisciplinary studies that are eventually to provide a holistic view of catchment functioning. In this context, aerial diatoms have been shown to have the potential for detecting of the onset/cessation of rapid water flowpaths within the hillslope-riparian zone-stream continuum. However, many open questions prevail as to aerial diatom reservoir size, depletion and recovery, as well as to their mobilisation and transport processes. Moreover, aerial diatoms remain poorly known compared to freshwater species and new species are still being discovered. Here, we ask whether aerial diatom flushing can be observed in three catchments with contrasting physiographic characteristics in Luxembourg, Oregon (USA) and Slovakia. This is a prerequisite for qualifying aerial diatoms as a robust indicator of the onset/cessation of rapid water flowpaths across a wider range of physiographical contexts. One species in particular, (Hantzschia amphioxys (Ehr.) Grunow), was found to be common to the three investigated catchments. Aerial diatom species were flushed, in different relative proportions, to the river network during rainfall-runoff events in all three catchments. Our take-away message from this preliminary examination is that aerial diatoms appear to have a potential for tracing episodic hydrological connectivity through a wider range of physiographic contexts and therefore serve as a complementary tool to conventional hydrological tracers.


2017 ◽  
Vol 21 (2) ◽  
pp. 1225-1249 ◽  
Author(s):  
Ralf Loritz ◽  
Sibylle K. Hassler ◽  
Conrad Jackisch ◽  
Niklas Allroggen ◽  
Loes van Schaik ◽  
...  

Abstract. This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall–runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1450 ◽  
Author(s):  
Dariusz Młyński ◽  
Andrzej Wałęga ◽  
Leszek Książek ◽  
Jacek Florek ◽  
Andrea Petroselli

The aim of the study was to analyze the possibility of using selected rainfall-runoff models to determine the design hydrograph and the related peak flow in a mountainous catchment. The basis for the study was the observed series of hydrometeorological data for the Grajcarek catchment area (Poland) for the years 1981–2014. The analysis was carried out in the following stages: verification of hydrometeorological data; determination of the design rainfall; and determination of runoff hydrographs with the following rainfall-runoff models: Snyder, NRCS-UH, and EBA4SUB. The conducted research allowed the conclusion that the EBA4SUB model may be an alternative to other models in determining the design hydrograph in ungauged mountainous catchments. This is evidenced by the lower values of relative errors in the estimation of peak flows with an assumed frequency for the EBA4SUB model, as compared to Snyder and NRCS-UH.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1469 ◽  
Author(s):  
Muhammad Ajmal ◽  
Muhammad Waseem ◽  
Dongwook Kim ◽  
Tae-Woong Kim

The applicability of the curve number (CN) model to estimate runoff has been a conundrum for years, among other reasons, because it presumes an uncertain fixed initial abstraction coefficient (λ = 0.2), and because choosing the most suitable watershed CN values is still debated across the globe. Furthermore, the model is widely applied beyond its originally intended purpose. Accordingly, there is a need for more case-specific adjustments of the CN values, especially in steep-slope watersheds with diverse natural environments. This study scrutinized the λ and watershed slope factor effect in estimating runoff. Our proposed slope-adjusted CN (CNIIα) model used data from 1779 rainstorm–runoff events from 39 watersheds on the Korean Peninsula (1402 for calibration and 377 for validation), with an average slope varying between 7.50% and 53.53%. To capture the agreement between the observed and estimated runoff, the original CN model and its seven variants were evaluated using the root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), percent bias (PB), and 1:1 plot. The overall lower RMSE, higher NSE, better PB values, and encouraging 1:1 plot demonstrated good agreement between the observed and estimated runoff by one of the proposed variants of the CN model. This plausible goodness-of-fit was possibly due to setting λ = 0.01 instead of 0.2 or 0.05 and practically sound slope-adjusted CN values to our proposed modifications. For more realistic results, the effects of rainfall and other runoff-producing factors must be incorporated in CN value estimation to accurately reflect the watershed conditions.


2012 ◽  
Vol 248 ◽  
pp. 379-383
Author(s):  
Rasoul Khandan ◽  
Philip Sewell ◽  
Siamak Noroozi ◽  
Mohammad Reza Ramazani

Considering the non-linearity, complexity and anisotropy of constitutive equations in composite materials, numerical methods are essential to evaluate the behaviour of this material. The finite element method (FEM) is a powerful computational technique for the solution of differential and integral equations that arise in various fields of engineering and applied science such as composite materials. Here, an FEM tool is designed to analyse non-linearity in the behaviour of composites caused by the effect of transverse shear and twist in laminated composite plates. The tool is established by using FEM for composites in ABAQUS combined with programming in Python to run the tests for all possible fibre orientations in laminated composite plates. It is shown that the tool has the ability to design laminated composite plates by considering the effect of transverse shear and the tool’s output provides results for all different fibre orientations. It is demonstrated that there is good agreement between numerical results obtained from this tool and experimental results. The advantages of the tool give designers the opportunity to use this tool for wide range of products.


Sign in / Sign up

Export Citation Format

Share Document