THE CELL WALL AND CELL DIVISION OF GRAM-NEGATIVE BACTERIA

1966 ◽  
Vol 12 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Pamela Steed ◽  
R. G. E. Murray

The cell wall of Gram-negative bacteria is generally complex and multilayered. Many, exemplified by Escherichia coli and Spirillum serpens in this study, show a constrictive division in which die cell appears to be pinched in the middle and septa are not seen. It was found that sections of E. coli and S. serpens show true septum formation in a high proportion of dividing cells when they were grown and fixed at 45°. Cells grown at 45° still showed some septum formation if cooled to 20° before fixation. However, septa were demonstrated in cells grown and fixed at 30° when the buffer used in the Ryter and Kellenberger fixative was diluted 1:6; it would appear that the tonicity of the fixing environment is critical. These septa involve an annular invagination of the plasma membrane and the concomitant synthesis of an extremely thin cell wall septum, which appears to consist of the mucopeptide layer alone. Centripetal splitting of this layer and synthesis of the outer layers of the wall follow but are sufficiently delayed that a complete septum was often visible. This form of septum has been known as the normal habit fur some and can now be considered normal for most, if not all, Gram-negative bacteria. The reason for the appearance of constriction in dividing cells fixed by commonly accepted methods remains obscure but attention is drawn to the problems of artefact in the preservation and study of dynamic structures at high resolution.

1965 ◽  
Vol 11 (3) ◽  
pp. 547-560 ◽  
Author(s):  
R. G. E. Murray ◽  
Pamela Steed ◽  
H. E. Elson

Electron micrographs of sections of Escherichia coli have shown that the wall has an extra component 20–30 Å in thickness on the inside of the usual double-track profile. Demonstration was aided by treating the sections with uranium, lanthanum, thallium, or lead salts. This innermost layer alone was lost in spheroplasts produced by penicillin poisoning or treatment with lysozyme-EDTA, and was removed from isolated cell walls by lysozyme. The innermost layer is considered, therefore, to contain the mucopeptide characteristic of bacteria. The inner taut layer (or "intermediate layer") of Spirillum serpens, Vitreoscilla sp., and Simonsiella sp. was also found to be lysozyme sensitive. In the latter species this layer was the sole component of the septum, so that the outer cell wall components enclosed the elements of the trichoma. Other components were less easily localized but it was considered that the lipoprotein layer was outside of the limits of the wall profile usually visualized in sections. The outer layers generally loosened during embedding, but in E. coli and some others the layers all stayed tightly adherent to each other. The Gram-negative bacteria seem to have the double-track layer and the mucopeptide as a basic complement for the cell wall.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


1971 ◽  
Vol 123 (4) ◽  
pp. 501-505 ◽  
Author(s):  
J. W. Dale

1. The amino acid composition of the β-lactamase from E. coli (R-1818) was determined. 2. The R-1818 β-lactamase is inhibited by formaldehyde, hydroxylamine, sodium azide, iodoacetamide, iodine and sodium chloride. 3. The Km values for benzylpenicillin, ampicillin and oxacillin have been determined by using the R-factor enzyme from different host species. The same values were obtained, irrespective of the host bacterium. 4. The molecular weight of the enzyme was found to be 44600, and was the same for all host species. 5. The relationship of R-1818 and R-GN238 β-lactamases is discussed.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2020 ◽  
Vol 61 (6) ◽  
pp. 870-883 ◽  
Author(s):  
Inga Nilsson ◽  
Sheng Y. Lee ◽  
William S. Sawyer ◽  
Christopher M. Baxter Rath ◽  
Guillaume Lapointe ◽  
...  

Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPSs) on the outer leaflet and phospholipids (PLs) on the inner leaflet. The loss of this asymmetry due to mutations in the LPS biosynthesis or transport pathways causes the externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we used metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase expression in Escherichia coli allowed for the incorporation of exogenous propargylcholine into phosphatidyl(propargyl)choline and exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC), as confirmed by LC/MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool for detecting a compromised bacterial OM, revealing aberrant PL externalization, and identifying or characterizing novel cell-active inhibitors of LPS biosynthesis or transport.­


2020 ◽  
Vol 6 (23) ◽  
pp. eaaz6333 ◽  
Author(s):  
Mikhail Bogdanov ◽  
Kyrylo Pyrshev ◽  
Semen Yesylevskyy ◽  
Sergey Ryabichko ◽  
Vitalii Boiko ◽  
...  

The distribution of phospholipids across the inner membrane (IM) of Gram-negative bacteria is unknown. We demonstrate that the IMs of Escherichia coli and Yersinia pseudotuberculosis are asymmetric, with a 75%/25% (cytoplasmic/periplasmic leaflet) distribution of phosphatidylethanolamine (PE) in rod-shaped cells and an opposite distribution in E. coli filamentous cells. In initially filamentous PE-lacking E. coli cells, nascent PE appears first in the periplasmic leaflet. As the total PE content increases from nearly zero to 75%, cells progressively adopt a rod shape and PE appears in the cytoplasmic leaflet of the IM. The redistribution of PE influences the distribution of the other lipids between the leaflets. This correlates with the tendency of PE and cardiolipin to regulate antagonistically lipid order of the bilayer. The results suggest that PE asymmetry is metabolically controlled to balance temporally the net rates of synthesis and translocation, satisfy envelope growth capacity, and adjust bilayer chemical and physical properties.


2004 ◽  
Vol 48 (3) ◽  
pp. 961-969 ◽  
Author(s):  
Astrid Zervosen ◽  
Wei-Ping Lu ◽  
Zhouliang Chen ◽  
Ronald E. White ◽  
Thomas P. Demuth ◽  
...  

ABSTRACT Several non-β-lactam compounds were active against various gram-positive and gram-negative bacterial strains. The MICs of arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones were lower than those of ampicillin and cefotaxime for methicillin-resistant Staphylococcus aureus MI339 and vancomycin-resistant Enterococcus faecium EF12. Several compounds were found to inhibit the cell wall synthesis of S. aureus and the last two steps of peptidoglycan biosynthesis catalyzed by ether-treated cells of Escherichia coli or cell wall membrane preparations of Bacillus megaterium. The effects of the arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-one derivatives on E. coli PBP 3 and PBP 5, Streptococcus pneumoniae PBP 2xS (PBP 2x from a penicillin-sensitive strain) and PBP 2xR (PBP 2x from a penicillin-resistant strain), low-affinity PBP 2a of S. aureus, and the Actinomadura sp. strain R39 and Streptomyces sp. strain R61 dd-peptidases were studied. Some of the compounds exhibited inhibitory activities in the 10 to 100 μM concentration range. The inhibition of PBP 2xS by several of them appeared to be noncompetitive. The dissociation constant for the best inhibitor (Ki = 10 μM) was not influenced by the presence of the substrate.


Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2487-2497 ◽  
Author(s):  
Anne Vianney ◽  
Grégory Jubelin ◽  
Sophie Renault ◽  
Corine Dorel ◽  
Philippe Lejeune ◽  
...  

Curli are necessary for the adherence of Escherichia coli to surfaces, and to each other, during biofilm formation, and the csgBA and csgDEFG operons are both required for their synthesis. A recent survey of gene expression in Pseudomonas aeruginosa biofilms has identified tolA as a gene activated in biofilms. The tol genes play a fundamental role in maintaining the outer-membrane integrity of Gram-negative bacteria. RcsC, the sensor of the RcsBCD phosphorelay, is involved, together with RcsA, in colanic acid capsule synthesis, and also modulates the expression of tolQRA and csgDEFG. In addition, the RcsBCD phosphorelay is activated in tol mutants or when Tol proteins are overexpressed. These results led the authors to investigate the role of the tol genes in biofilm formation in laboratory and clinical isolates of E. coli. It was shown that the adherence of cells was lowered in the tol mutants. This could be the result of a drastic decrease in the expression of the csgBA operon, even though the expression of csgDEFG was slightly increased under such conditions. It was also shown that the Rcs system negatively controls the expression of the two csg operons in an RcsA-dependent manner. In the tol mutants, activation of csgDEFG occurred via OmpR and was dominant upon repression by RcsB and RcsA, while these two regulatory proteins repressed csgBA through a dominant effect on the activator protein CsgD, thus affecting curli synthesis. The results demonstrate that the Rcs system, previously known to control the synthesis of the capsule and the flagella, is an additional component involved in the regulation of curli. Furthermore, it is shown that the defect in cell motility observed in the tol mutants depends on RcsB and RcsA.


Sign in / Sign up

Export Citation Format

Share Document